

Extensive Copper Mineralisation Intersected at the Yeoval South Prospect

- Broad intersection of copper mineralisation with coincident gold, silver and molybdenum anomalism in the granodiorite host rock intersected from a single diamond drill hole at Yeoval South Prospect
- Multi-element drill results include:
 - GYDD002 copper intersection 276m @ 0.12% Cu from 128m, including:
 - o 94m @ 0.18% Cu from 208m and
 - 10m @ 0.56% Cu from 260m and
 - o 2m @ 1.8% Cu from 264m
 - O GYDD002 gold intersection 20m @ 0.15g/t Au from 208m
 - GYDD002 silver 18m @ 4.12g/t Ag from 260m, including:
 - o 2m @ 25g/t Ag from 264m
 - GYDD002 molybdenum intersection 2m @ 545ppm Mo from 282m; and 4m @ 160ppm Mo from 348m.
- GYDD002 was drilled ~350m to the south of existing Mineral Resource Estimate (12.8Mt at 0.38% copper, 0.14g/t gold, 2.2g/t silver and 120ppm molybdenum at a 0.2% Cu cut off), which has identified significant zones of broad copper mineralisation
- Assay result confirms a large porphyry alteration system at Yeoval enhancing the exploration potential in the area – GRL to review assays and pending results ahead of additional exploration initiatives
- Assay results from further diamond drilling at Cyclops Prospect, north of the Yeoval MRE are pending – drill hole intersected multiple zones of quartz-magnetite-chalcopyrite bearing veins and typical porphyry copper alteration assemblages

Godolphin Resources Limited (ASX: GRL) ("Godolphin" or the "Company") is pleased to advise it has received assay results from one diamond drill hole (GYDD002), from a 900m two-hole program to the south of the Yeoval Prospect on the Company's 100% owned Yeoval Tenement in the Central West of NSW (EL8538) (refer ASX announcement: 23 March 2022 - ASX: GRL "Ready to Drill Yeoval Copper-Gold Targets").

Diamond drilling at the Yeoval South Prospect has intersected broad zones of disseminated and vein-hosted copper mineralisation with coincident gold, silver and molybdenum mineralisation. Copper mineralisation greater than 1% was intersected in the granodiorite host rock, extending the copper and gold mineralisation in the existing JORC compliant Yeoval Prospect Mineral Resource further to the south. Drill hole GYDD002 was designed to test for southern extensions to the resource mineralisation and for mineralisation at depth underneath historic drilling which did not extend beyond 90 metres depth.

Managing Director Ms Jeneta Owens said: "These results are highly encouraging. To intersect such a wide interval of copper mineralisation and alteration, with some good grades of gold mineralisation a significant distance to the south of the existing Mineral Resource, really enhances the potential size of the Yeoval porphyry system. The drill hole has provided Godolphin with solid insight into Yeoval's mineralisation and an opportunity to considerably expand the current Mineral Resource Estimate. Once we have the Cyclops drill results from the northern drill hole, we can then evaluate all the results from the last campaign of drilling at Yeoval to design the best possible path forward for the two Prospects."

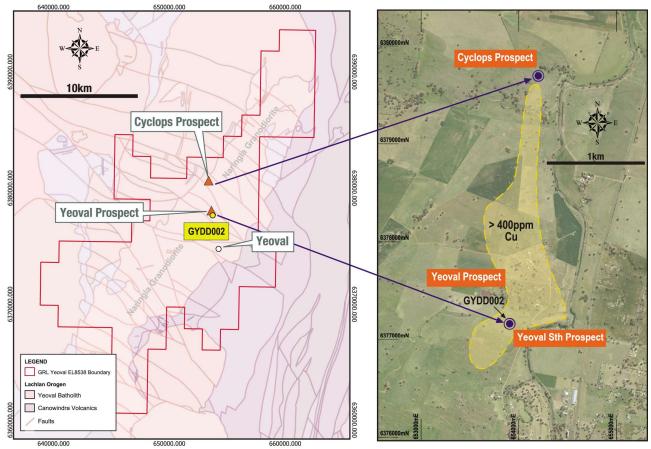


Figure 1: Left: Yeoval tenement with location of the Yeoval and Cyclops Prospects. Right: Location of drill hole GYDD002 at the Yeoval South Prospect ~350m south of the Yeoval Prospect that has an existing MRE.

Yeoval South Prospect

Drilling at the Yeoval South Prospect was designed to test the southern extent of the existing JORC (2012) Mineral Resource Estimate (MRE) of 12.8Mt at 0.38% copper, 0.14g/t gold, 2.2g/t silver and 120ppm molybdenum at a 0.2% Cu cut off from the Yeoval Prospect located approximately 350m north of GYDD002 drill hole collar.

The drill hole intersected multiple zones of narrow stringer quartz-epidote veins and quartz-magnetite veins containing chalcopyrite and lesser bornite mineralisation, as well as the broad zones of disseminated chalcopyrite mineralisation throughout the host granodiorite. Numerous narrow zones of vein-hosted molybdenum were visible in the core within the main copper intersection. Hydrothermal alteration mineral assemblages present in the Naringla Granodiorite host rock comprise weak pervasive sericite, selective chlorite alteration of hornblende, and biotite with interpreted albite haloes surrounding small quartz-epidote veins. These mineral assemblages will be confirmed by follow-up petrographic studies.

The result in drill hole GYDD002 is very encouraging, as it highlights that the main resource containing +0.2% Cu mineralisation is surrounded by an extensive low-grade envelope with excellent exploration potential to identify higher grade mineralisation outside the current Mineral Resource.

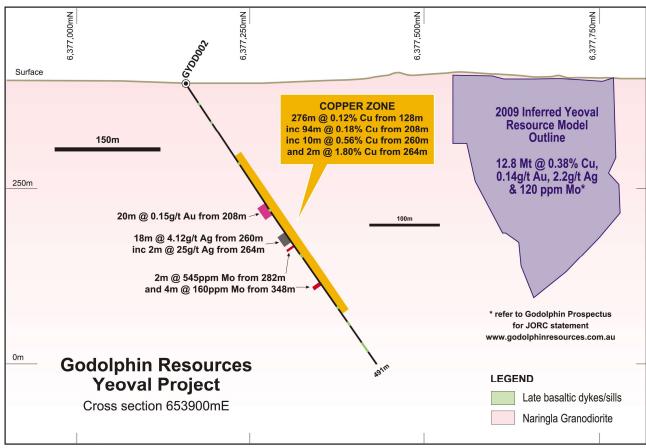


Figure 2: Cross section of GYDD002 looking west.

Figure 3: Vein hosted chalcopyrite (left) and molybdenum (right) mineralisation with albite-sericitechlorite vein halo alteration in GYDD002.

Results from diamond drill hole GYDD001 drilled at the Cyclops Prospect, approximately 2.5km north of GYDD002 are pending. The drill hole intercepted multiple zones of chalcopyrite mineralisation associated with quartz-magnetite veins along shears in the granodiorite (refer ASX announcement: 13 April 2022 ASX: GRL "Drilling Completed at Cyclops Prospect at Yeoval").

<<ENDS>>

This market announcement has been authorised for release to the market by the Board of Godolphin Resources Limited.

For further information regarding Godolphin, please visit https://godolphinresources.com.au/ or contact:

Jeneta Owens
Managing Director

+61 417 344 658

jowens@godolphinresources.com.au

Released through: Henry Jordan, Six Degrees Investor Relations, +61 431 271 538

About Godolphin Resources

Godolphin Resources (ASX: GRL) is an ASX listed resources company, with 100% controlled Australian-based projects in the Lachlan Fold Belt ("LFB") NSW, a world-class gold-copper province. Currently the Company's tenements cover 3,200km² of highly prospective ground focussed on the Lachlan Transverse Zone, one of the key structures which controlled the formation of copper and gold deposits within the LFB. Additional prospectivity attributes of GRL tenure include the McPhillamy's gold hosting Godolphin Fault and the Boda gold-copper hosting Molong Volcanic Belt.

Godolphin is exploring for structurally hosted, epithermal gold and base-metal deposits and large, gold-copper Cadia style porphyry deposits and is pleased to announce a re-focus of exploration efforts for unlocking the potential of its East Lachlan tenement holdings, including increasing the mineral resource of its advanced Lewis Ponds Project. Reinvigoration of the exploration efforts across the tenement package is the key to discovery and represents a transformational stage for the Company and its shareholders.

COMPLIANCE STATEMENT The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Ms Jeneta Owens, a Competent Person who is a Member of the Australian Institute of Geoscientists. Ms Owens is the Managing Director and full-time employee of Godolphin Resources Limited. Ms Owens has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Owens consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Information in this announcement is extracted from reports lodged as market announcements referred to above and available on the Company's website www.godolphinresources.com.au.

The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	Diamond Drilling Entire drill holes were sampled on a 2m interval basis. Each sample was cut in half, with one half sent for assay analysis and the other stored for future use. All intervals were logged and recorded in GRL's standard templates and saved in the company database. Data includes: from and to measurements, colour, lithology, magnetic susceptibility, structures etc. Visible mineralisation content was logged as well as alteration and weathering.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details. 	Diamond Drilling - Orientated diamond drilling (DD) with PQ core size to fresh rock then HQ core size using a triple tube for the remainder of the holes were used. Downhole surveys conducted every 30m (single shot) to monitor hole deviation. Multi-shot surveys were taken at the end of the hole whilst pulling the rods.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 Diamond Drilling Drill core recovery was determined by comparing the drilled length of each interval with the physical core in the tray. The drill depth and drill run length data is recorded on the core blocks by the drilling company and checked by GRL geologists. Some small intervals of core loss in the upper weathered zone of the granite, however overall estimated recovery was high.

	NNOUNCEMENT	
Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	The drill core was logged by a GRL geologist. The log includes detailed datasets for: lithology, alteration, mineralisation, veins, structure, geotechnical logs, core recovery and magnetic susceptibility. The data is logged by a qualified geologist and is suitable for use in any future geological modelling, resource estimation, mining and/or metallurgical studies
Sub-sampling techniques and sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Sample intervals were marked by the geologist using the lithology as guide. Sample lengths are not equal, but an average length of 2.0m was obtained for this program. The PQ and HQ core was split using a core saw and one half of each sample interval sent for assay analysis. QAQC was employed. A standard, blank or duplicate sample was inserted into the sample stream at regular intervals and also at specific intervals based on the geologist's discretion. Standards were quantified industry standards. Sample sizes are appropriate for the nature of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 All GRL samples were submitted to ALS laboratories in Orange. The samples were sorted, wet weighed, dried then weighed again. Primary preparation involved crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which was pulverised in a vibrating pulveriser. All coarse residues have been retained. The samples have been analysed by firing a 50g (approx) portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of Gold, Platinum and Palladium in the sample. Au, Pd, Pt have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. The lab routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. GRL also inserted QAQC samples into the sample stream as mentioned above. All of the QAQC data has been statistically assessed and if required a batch or a portion of the batch may be re-assayed. (no re-assays required for the data in the release). Verification of sampling and assaying.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The lab routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. GRL also inserted QAQC samples as mentioned above All of the QAQC data has been statistically assessed. GRL has undertaken its own further review of QAQC results of the ALS routine standards through a database consultancy indicating acceptable QAQC standards. The results are considered to be acceptable and suitable for reporting. All data and logging were recorded directly into field laptops. Visual validation as well as numerical validation were completed by two or more geologists. No adjustments to data have been undertaken

	NNOUNCEMENT	
Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 A DGPS was used to pick up collars with an averaged waypoint measurement: accuracy of less than 1m. Coordinates were picked up using WGS84 and transformed into Map Grid of Australia 1994 Zone 55
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Early-stage drilling program for both for the Yeoval South Prospect. Target is broad disseminated mineralisation surrounding an intrusive rock unit, as a result the drill density in both areas is deemed sufficient to test the target extension.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 Mineralisation at the nearby Yeoval Prospect is interpreted to be a disseminated wall rock porphyry style deposit related to microgranodiorite and dacite intrusives. Orientation of the drillhole was deemed suitable to target mineralisation extending further south from the main resource. No significant bias is likely as a result of the pattern of intersection angles.
Sample security	The measures taken to ensure sample security.	 For the program, care has been taken to have standard procedures for sample processing, They have been simple and industry standard to avoid sample bias. All samples were collected and accounted for by GRL employees/consultants during drilling. All logging was done by GRL personnel. All samples were bagged into calico bags by GRL personnel. Diamond Drill core was collected daily from the site and taken to the GRL shed in Orange. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received are routinely followed up and accounted for.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Surveys, Assays, Geology., previous resource estimates were studied for factors likely to introduce bias, up or down.

ASX ANNOUNCEMENT
Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference	<u>Yeoval</u>
tenement and land tenure	name/number, location and	The Yeoval project is located surrounding the township of Yeoval in NSW and has an elevation between 200 m and 500 m above sea-level.
status	ownership including	The exploration rights to the project are owned 100% by the Godolphin Resources through the granted exploration licence EL8358
	agreements or material issues with	The Yeoval prospect, on which the aforementioned resource was calculated, lies on Exploration License number 8538 and is held 100% by GRL.
	third parties such as	The land is owned by private land holders north of the township of Yeoval
	joint ventures, partnerships.	There are no joint venture or any other arrangements pertaining to this project, which also no native title claims over the area.
	overriding royalties,	The security deposit paid by GRL for EL8538 is \$10,000.
	native title interests,	
	historical sites,	
	wilderness or national park and	
	park and environmental	
	settings.	
	The security of the	
	tenure held at the time	
	of reporting along with	
	any known	
	impediments to	
	obtaining a license to	
Exploration	operate in the area.Acknowledgment and	Yeoval
done by other	appraisal of	
parties	exploration by other	See ASX announcements by Ardea (ASX: ARL) on 15 August 2019, and GRL (ASX: GRL) on 7 October 2021 and 23 March 2022.
,	parties.	
Geology	• Deposit type,	Yeoval
	geological setting and style of	Geology
	mineralization.	EL8538 covers a large portion of the Early Devonian Yeoval Batholith including felsic to mafic intrusives of the Yeoval Intrusive Complex.
		The Yeoval Complex is strongly fractionated and comprised of various intermediate intrusive lithologies – granite, quartz monzodiorite, quartz diorite, microgranodiorite, granodiorite, diorite and gabbro (Pogson et al 1998). The more fractioned intermediate phases are highly prospective for porphyry copper - molybdenum ± gold mineralisation.
		This Yeoval intrusive complex formed during a Late Silurian to Early Devonian melting and rifting event that split the Ordovician to Early Silurian Macquarie Arc. Its chemistry is shoshonitic,
		in common with the Ordovician volcanic rocks that host the Cadia and Northparkes porphyry copper-gold deposits, and a similar mantle source and mineral potential is inferred. The south-
		eastern portion of the licence area hosts the Silurian aged Canowindra Volcanics - garnetiferous quartz-feldspar-cordierite tuffs, ashstone and breccias. A core of Ordovician sandstone,
		siltstone and minor limestone from the Kabadah Formation found within the Silurian sediments and volcanics. This area is considered prospective for low sulphidation Au-Ag mineralisation
		similar in style to the Ardea Mt Aubrey gold deposit to the south-west of the area.

Criteria	JORC Code explanation	Commentary								
		Emplacement of intrusives and extrus	sives in the	Early Devonian which a	re related to the Boggy Plain	Supersuite have giver	n rise to intrusive rela	ated miner	alisation.	
		Numerous copper-gold occurrences quartz-magnetite-chalcopyrite veining setting. Minor occurrences of copper in the south-west of the licence area. Mineralisation hosted within the Yeova	within strue gold mine Scattered o	ctures inferred within the ralisation is present with copper-gold prospects and copper-gold pros	ne granodiorite, at the Goodrin nin the microgranite and grani llso occur within the Silurian a	ch Mine. The style of t te of the Yeoval Comp and Devonian sequenc	the mineral occurrer lex. Minor molybden tes east of the Yeova	ices is indi um is repor al Batholith	cative of a ported at the Ma	rphyry copper-g rtins Reef Prosp
Drill hole	A summary of all	Total drilling at Yeoval EL8538 during	this camp	aign was 896 7 metres	comprising of					
nformation	information materia		tino campi	aigir was soon monos,	oompriomy on					
	to the understanding		n this drillin	g is presented in the tal	ole below (GYDD001 results a	are pending)				
	of the exploration		Hole	Lease ID	MGA55 East	MGA55 North	MGA_RL	Dip	MGA	Depth m
	results including a	1	Туре						Azi	
	tabulation of the		DD	EL8538	654197.7	6379708.4	425.841	-55	235	405.4
	following information		DD	EL8538	653901.2	6377158.3	400.86	-55	355	491.3
	for all Material dri holes:									
Data	In reporting	No grade aggregation, weighting	. or cut-off	methods were used for	this announcement.					
aggregation	Exploration Results		,,							
methods	weighting averaging									
	techniques, maximun									
	and/or minimun									
	grade truncations (eg									
	cutting of high grades									
	and cut-off grades are usually Material and									
	should be stated.	′								
	Where aggregate									
	intercepts incorporate									
	short lengths of high									
	grade results and	1								
	longer lengths of lov									
	grade results, the									
	procedure used fo									
	such aggregation									
	should be stated and some typica									
	examples of such									
	aggregations should									
	be shown in detail.									
Relationship	These relationships	• The holes were drilled at an average	e of -55° de	clination						
between	are particularly	,								

Criteria	JORC Code explanation	Commentary
mineralization	important in the	The mineralisation at the nearby Yeoval Prospect is modelled as being near vertical.
widths and	reporting of	
intercept	Exploration Results.	
lengths	If the geometry of the	
	mineralisation with	
	respect to the drill	
	hole angle is known,	
	its nature should be	
	reported.	
Diagrams	Appropriate maps and	Diagrams pertaining to this drilling program can be found in the body of the announcement.
	sections (with scales)	Diagrams for the Yeoval Resource can be found in the Ardea Resources Ltd (ASX: ARL) released 15 August 2019
	and tabulations of	
	intercepts should be	
	included for any	
	significant discovery	
	being reported These	
	should include, but	
	not be limited to a	
	plan view of drill hole	
	collar locations and	
	appropriate sectional	
Balanced	views. • Where	All results of Ardea's and Godolphin's exploration results have been reported in previous ASX releases
reporting	Where comprehensive	
reporting	reporting of all	Sample results were composited to 2 m intervals/composites
	Exploration Results is	
	not practicable,	
	representative	
	reporting of both low	
	and high grades	
	and/or widths should	
	be practiced to avoid	
	misleading reporting	
	of Results.	

	X ANNOUNCE	
Criteria	JORC Code explanation	Commentary
Other	 Other exploration 	See ASX Announcements by Ardea Resources Ltd (ASX: ARL) on 15 August 2019, and GRL (ASX: GRL) on 7 October 2021 and 23 March 2022.
substantive	data, if meaningful	
exploration	and material, should	
data	be reported including	
	(but not limited to):	
	geological	
	observations;	
	geophysical survey	
	results; geochemical	
	survey results; bulk	
	samples – size and	
	method of treatment;	
	metallurgical test	
	results; bulk density,	
	groundwater,	
	geotechnical and rock	
	characteristics;	
	potential deleterious	
	or contaminating	
	substances.	
Further work	The nature and scale	Currently under assessment
	of planned further	
	work (eg tests for	
	lateral extensions or	
	depth extensions or	
	large-scale step-out	
	drilling).	
	Griiirig).	

Appendix 2: Table of Drill sample results discussed in this ASX release. (Note: This is a complete list of samples, but not of all the elements. A complete list can be requested and supplied pending GRL Board approval).

GYDD002 - Yeoval Prospect

SampleID	Туре	From_m	To_m	Au_ppm	Aa nnm	As_ppm	Cu nnm	Fe_ppm	Mo nnm	Pb_ppm	Zn_ppm
GRD07256	DDH	24	26	0.002	Ag_ppm 0.02	1.1	Cu_ppm 8.1	1.71	Mo_ppm 2.15	8.3	49
GRD07257	DDH	26	28	0.001	0.02	1.6	11.4	1.76	2.03	10.5	52
GRD07258	DDH	28	30	0.002	0.02	1.4	11.2	1.6	4	9.9	49
GRD07259	DDH	30	32	0.001	0.01	1.1	4.2	1.69	1.75	7.5	46
GRD07260	DDH	32	34	0.001	0.01	1.2	4.9	1.75	1.01	6.6	49
GRD07261	DDH	34	36	0.001	0.02	1.2	4.5	1.64	1.36	8.1	41
GRD07262	DDH	36	38	0.011	0.12	3.5	142	5.13	0.92	5.1	68
GRD07263	DDH	38	40	0.004	0.36	1.2	211	3.11	0.61	6.3	35
GRD07264		40	42	0.005	0.1	1.5	147.5	3.25	50	8.8	38
GRD07265	DDH	42	44	0.029	0.31	1.2	326	3.74	0.56	6.7	45
GRD07266	DDH	44	46	0.007	0.29	1.6	683	4.52	3.72	6.2	57
GRD07267	DDH	46	48	0.011	0.23	1.5	616	3.35	2.48	5.8	39
GRD07268	DDH	48	50	0.004	0.23	1.6	183	3.4	1.7	6.2	43
GRD07269	DDH	50	52	0.004	0.08	1.2	209	4.02	1.95	4.9	52
GRD07209	DDH	52	54	0.004	0.04	1.5	65.6	3.91	0.7	5.5	47
GRD07270 GRD07271	DDH	54	56	0.003	0.04	1.4	100.5	4.25	0.74	5.8	50
GRD07271 GRD07272	DDH	56	58	0.004	0.03	1.8	61	3.4	0.74	6.4	37
GRD07272	DDH	58	60	0.004	0.07	1.8	42.6	3.27	0.41	7.1	39
GRD07273	DDH	60	62	0.004	0.07	1.8	86	3.39	0.41	9.8	41
GRD07274 GRD07275	DDH	62	64	0.003	0.11	1.5	178.5	3.22	0.58	6.4	50
GRD07273	DDH	64	66	0.003	0.12	1.3	57.6	3.22	0.69	7.4	46
GRD07277 GRD07278	DDH	66	68	0.003	0.14	1.8	76.7	3.21	0.09	7.4	46
GRD07278	DDH	68	70	0.000	0.03	1.7	48.9	5.74	0.52	7.4	84
GRD07279 GRD07280	DDH	70	72	0.002	0.03	1.7	42.6	5.7	0.81	7.9	87
GRD07280 GRD07281	DDH	70	74	0.002	0.02	1.5	57.3	3.23	0.81	7.9	54
GRD07281 GRD07282	DDH	74	76	0.004	0.04	1.4	42.4	3.23	0.43	7.2	53
GRD07282 GRD07283	DDH	74	78	0.003	0.03	1.5	26.2	3.27	0.57	6.8	46
GRD07284	DDH	78	80	0.003	0.03	1.8	687	3.31	12.6	8.9	45
	DDH	80	82	0.015	0.24	1.5		3.36	0.91	6.5	44
GRD07286 GRD07287	DDH	82	84	0.003	0.03	1.4	105.5 81.7	3.46	0.91	6.8	44
GRD07287 GRD07288	DDH	84	86	0.008	0.04	1.4	112.5	3.36	0.99	8.7	41
GRD07288	DDH	86	88	0.004	0.04	1.4	1065	3.36	4.12	6	52
GRD07289 GRD07290	DDH	88	90	0.028	0.19	1.3	315	3.41	0.89	6.4	50
GRD07290 GRD07291	DDH	90	90	0.016	0.03	1.6	100.5	3.41	0.89	6.3	42
GRD07291 GRD07292	DDH	90	94	0.002	0.04	1.5	325	3.31	0.97	9.4	42
GRD07292 GRD07293	DDH	92	94	0.009	0.12	1.3	323	3.37	0.97	9.4	40
GRD07293 GRD07294	DDH		98			1.3					
	DDH	96		0.013	0.18		471	3.43	0.74	7.3	38
GRD07295	DDH	98	100	0.008	0.11	1.4	178	3.29	1.43	6.8	40
GRD07297	DDH	100	102	0.011	0.14	1.6	228	3.33	0.74	6.9	38
GRD07298	DDH	102	104	0.007	0.1	1.9	203	3.28	0.64	8	37

SampleID	Type	Erom m	To m	Au nom	Aa nnm	Ao nam	Cu nom	Fo nnm	Ma nam	Dh. nnm	7n nnm
GRD07299	Type DDH	From_m 104	To_m 106	Au_ppm 0.012	Ag_ppm 0.16	As_ppm 1.7	Cu_ppm 251	Fe_ppm 3.37	Mo_ppm 3.14	Pb_ppm 10.9	Zn_ppm 38
GRD07300	DDH	106	108	0.010	0.17	2	249	3.33	4.79	7	41
GRD07301	DDH	108	110	0.015	0.16	2.3	249	3.31	1.42	7.2	45
GRD07302	DDH	110	112	0.024	0.35	2.3	299	3.23	15.35	6.8	44
GRD07303		112	114	0.009	0.07	1	146	3.45	1.48	6.9	52
GRD07304	DDH DDH	114	116	0.032	0.19	1.2	159	3.02	0.84	7.5	50
GRD07305	DDH	116	118	0.006	0.13	1.8	93.5	3.2	0.74	6.9	49
GRD07306		118	120	0.009	0.13	1.6	188	3.24	0.79	7.2	48
GRD07307	DDH DDH	120	122	0.007	0.09	1.5	197	3.33	0.74	7.2	51
GRD07308		122	124	0.013	0.03	1.3	307	3.3	0.84	6.6	46
GRD07309	DDH	124	126	0.004	0.17	1.7	124	3.21	0.6	6.8	46
GRD07303	DDH	126	128	0.007	0.08	1.9	150	3.35	0.61	6.8	46
GRD07310	DDH	128	130	0.014	0.08	1.8	925	3.3	1.81	6.9	42
GRD07311	DDH	130	132	0.014	0.27	1.5	968	3.41	0.8	7.5	47
GRD07312	DDH	132	134	0.020	3.92	1.4	3890	3.41	4.93	35.3	69
GRD07313	DDH	134	136	0.148	0.34	1.6	1140	3.13	0.92	7.4	41
GRD07314 GRD07317	DDH	136	138	0.023	0.22	1.6	459	3.15	1.22	7.4	45
GRD07317	DDH	138	140		0.22	1.8	847	2.94			43
	DDH			0.026					6.53	7.3	
GRD07319	DDH	140	142	0.012	0.08	2.8	204	5.31	0.97	5.2	71
GRD07320	DDH	142	144	0.004	0.22	3.1	222	7.17	0.84	3.5	92
GRD07321	DDH	144	146	0.011	0.17	1.6	506	3.03	1.6		42
GRD07322	DDH	146	148	0.027	0.35	1.7	978	3.48	2.31	7	49
GRD07323	DDH	148	150	0.030	0.6	2	1455	2.94	7.34	7.1	41
GRD07324	DDH	150	152	0.015	0.3	1.9	534	2.6	7.04	3.9	32
GRD07325	DDH	152	154	0.014	0.19	1.9	330	2.96	0.49	5.2	41
GRD07326	DDH	154	156	0.022	0.26	2	603	3.03	6.54	7.1	43
GRD07327	DDH	156	158	0.025	0.28	2.3	931	3.04	0.95	6.4	40
GRD07328	DDH	158	160	0.031	0.49	1.7	1130	3.01	1.06	7.1	39
GRD07329	DDH	160	162	0.132	0.56	1.3	1160	2.58	1.05	7.3	38
GRD07330	DDH	162	164	0.284	1.44	1.1	2020	2.93	2.3	6.9	39
GRD07331	DDH	164	166	0.026	0.34	1.5	697	3.11	6.09	7.4	44
GRD07332	DDH	166	168	0.029	0.58	1.3	594	2.9	1.08	9.3	43
GRD07333	DDH	168	170	0.026	0.41	1.3	648	2.98	2.97	6.6	43
GRD07334	DDH	170	172	0.041	0.34	1.6	568	3.06	9.53	6.2	47
GRD07335	DDH	172	174	0.052	0.81	2.2	1215	2.95	4.44	7.8	40
GRD07337	DDH	174	176	0.073	0.96	1.6	1395	2.99	2.51	8.5	44
GRD07338	DDH	176	178	0.332	6.52	1.6	6330	2.6	33.5	9.9	43
GRD07339	DDH	178	180	0.035	0.53	1.7	941	3.03	2.27	9.9	41
GRD07340	DDH	180	182	0.013	0.32	1.9	604	3.02	1.92	8.2	41
GRD07341	DDH	182	184	0.011	0.15	1.4	169.5	2.7	1.03	7	42
GRD07342	DDH	184	186	0.050	0.8	1.9	1160	2.85	2.85	7.8	42
GRD07343	DDH	186	188	0.014	0.13	2.3	486	2.9	1.02	7.3	43
GRD07344	DDH	188	190	0.113	1.22	1.8	2110	2.83	2.1	14.6	42
GRD07346	DDH	190	192	0.040	0.5	1.3	1335	3.2	1.82	13.1	44
GRD07347	DDH	192	194	0.003	0.03	1.6	59.5	2.98	1.36	7.8	42

SampleID	Туре	From m	To_m	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRD07348	DDH	194	196	0.003	0.07	1.8	131	2.85	0.86	7.4	44
GRD07349	DDH	196	198	0.009	0.07	1.6	171	2.84	1.55	8	42
GRD07350	DDH	198	200	0.024	0.36	2.2	315	3.18	1.96	7.4	53
GRD07351	DDH	200	202	0.002	0.13	2.2	140	6.01	0.78	4	70
GRD07352	DDH	202	204	0.019	0.26	1.5	483	3	1.56	8.4	48
GRD07353	DDH	204	206	0.032	0.48	1.3	820	2.87	1.76	8.9	46
GRD07354	DDH	206	208	0.010	0.1	1.1	153	2.87	1.12	8	47
GRD07355	DDH	208	210	0.206	1.02	1.1	1280	2.86	2.32	10.6	44
GRD07357	DDH	210	212	0.271	1.98	0.9	2960	2.72	79.5	9.4	45
GRD07358	DDH	212	214	0.229	0.91	1.3	1465	3.72	12.2	6.9	90
GRD07359	DDH	214	216	0.040	0.27	1.2	1165	2.95	1.28	7.3	45
GRD07360	DDH	216	218	0.047	0.34	1.5	1095	2.53	1.94	7.7	58
GRD07361	DDH	218	220	0.183	1.17	1.2	3430	2.69	25.8	8	44
GRD07362	DDH	220	222	0.242	1.74	1.6	4410	2.87	14.05	10.8	66
GRD07363	DDH	222	224	0.121	0.59	2.3	2470	3.57	1.76	7.2	53
GRD07364	DDH	224	226	0.002	0.04	2.6	67.2	6.94	0.63	2.9	84
GRD07365	DDH	226	228	0.195	4.09	1.5	4450	3.19	23.9	10.8	37
GRD07366	DDH	228	230	0.029	0.42	1.4	1285	3.17	1.21	6.8	37
GRD07367	DDH	230	232	0.015	0.32	1.4	462	3.1	1.14	6.7	39
GRD07368	DDH	232	234	0.016	0.19	1.1	394	2.88	1.08	6.9	38
GRD07369	DDH	234	236	0.051	0.96	1.1	1215	3.04	1.24	7.5	39
GRD07370	DDH	236	238	0.013	0.3	1.3	267	3.15	1.18	6.9	43
GRD07370		238	240	0.007	0.1	1.1	321	2.9	1.03	6.4	36
GRD07371	DDH	240	242	0.057	1.35	1.1	1140	2.96	1.03	7.6	35
GRD07372	DDH	242	244	0.037	0.39	1.1	589	3	1.08	7.0	36
GRD07373	DDH	244	246	0.049	0.49	1.1	765	2.98	1.14	6.7	37
GRD07374	DDH	244	248	0.049	0.49	1.3	703	2.98	1.55	6.8	40
GRD07377	DDH	248	250	0.038	0.50	1.6	775	2.93	1.18	6.4	40
GRD07378	DDH	250	252	0.115	1.24	1.1	1855	2.93	1.16	6.8	35
GRD07379	DDH	252	254	0.113	0.94	1.4	1490	2.91	4.23	7.5	35
GRD07380 GRD07381	DDH	254	256	0.071	0.54	1.4	782	2.91	0.92	6.8	35
GRD07381 GRD07382	DDH	256	258	0.045	0.55	1.4	1050	2.97	22.2	7.1	35
GRD07382 GRD07383	DDH	258	260	0.040	0.94	1.4	1230	2.92	1.22	7.1	45
GRD07383 GRD07384	DDH	260	262	0.054	1.1	0.9	2140	2.76		5.4	48
	DDH					0.9	4050		28.5	5.6	
GRD07385	DDH	262	264	0.090	2.27			2.67	19.15		151
GRD07386	DDH	264	266	0.188	25	1.1	>10000	3.27	286	46	97
GRD07387	DDH	266	268	0.061	0.66	0.8	1195	2.77	25.3	8.2	43
GRD07388	DDH	268	270	0.085	1.12	1.3	2410	3.23	1.88	8.2	68
GRD07389	DDH	270	272	0.035	0.4	1.3	554	2.45	1.67	7.3	33
GRD07390	DDH	272	274	0.047	0.81	1.3	877	2.95	10.15	7.4	43
GRD07391	DDH	274	276	0.143	3.37	1.9	3040	2.42	11.75	9.3	71
GRD07392	DDH	276	278	0.097	2.37	2	2620	2.61	15.75	9.6	65
GRD07393	DDH	278	280	0.109	0.99	2.1	1765	2.96	5.15	9.9	71
GRD07394	DDH	280	282	0.035	0.39	1.1	650	3.09	12.25	6.5	37
GRD07395	DDH	282	284	0.037	0.31	1.2	607	2.98	545	8.2	41

CampleID	Tuna	Evam m	To m	A., 1919	A	A	Curam	Го пот	Ma nom	Dh. www	7, ,,,,,,,
SampleID GRD07397	Туре	From_m 284	To_m 286	Au_ppm 0.055	Ag_ppm 0.95	As_ppm 1.8	Cu_ppm 1015	Fe_ppm 3.03	Mo_ppm 6.7	Pb_ppm 9.4	Zn_ppm 40
GRD07398	DDH DDH	286	288	0.053	0.46	1.8	696	3.26	2.74	7.9	37
GRD07399		288	290	0.045	0.38	1.3	448	3.13	0.99	8.1	36
GRD07400	DDH	290	292	0.015	0.38	1.4	175	3.13	92.3	8.1	36
GRD07400	DDH	292	294	0.023	0.4	1.3	362	3.22	0.79	8.6	39
GRD07401	DDH	292	296	0.023			690	3.17		7.5	42
	DDH				0.44	1.2			3.41		
GRD07403	DDH	296	298	0.463	5.51	1.7	6650	3.04	209	10	38
GRD07404	DDH	298	300	0.070	0.75	1.5	1160	3.08	6.7	8.6	41
GRD07406	DDH	300	302	0.096	0.41	1.2	522	3.15	0.82	6.8	37
GRD07407	DDH	302	304	0.004	0.08	1.4	122.5	7.51	0.83	4.3	96
GRD07408	DDH	304	306	0.002	0.05	2.1	107.5	8.75	0.87	4.6	117
GRD07409	DDH	306	308	0.049	0.75	1.3	948	3.48	1.68	6.1	37
GRD07410	DDH	308	310	0.001	0.04	1.3	50.3	5.93	0.78	4.3	87
GRD07411	DDH	310	312	0.022	0.36	1.6	425	3.56	4.52	6.4	43
GRD07412	DDH	312	314	0.021	0.26	1.8	286	3.31	0.43	6.6	36
GRD07413	DDH	314	316	0.048	0.33	2.1	465	3.2	0.57	7.9	37
GRD07414	DDH	316	318	0.017	0.21	1.9	313	3.25	0.48	6.8	37
GRD07415	DDH	318	320	0.048	0.82	1.1	816	2.97	0.78	7.3	34
GRD07417	DDH	320	322	0.005	0.11	1.2	140.5	3.2	0.52	6.3	39
GRD07418	DDH	322	324	0.004	0.06	1.1	99.4	3.08	0.55	6.7	41
GRD07419	DDH	324	326	0.034	0.26	1.3	518	3.11	0.69	8.1	40
GRD07420	DDH	326	328	0.014	0.23	1.4	436	2.67	1.34	12.6	44
GRD07421	DDH	328	330	0.005	0.11	1.3	154	2.85	0.86	10.6	45
GRD07422	DDH	330	332	0.027	0.33	1.9	535	2.37	1.72	13.1	50
GRD07423	DDH	332	334	0.102	0.56	2.1	795	3.02	1.77	14.5	50
GRD07424	DDH	334	336	0.006	0.06	1.2	107	3.17	1.08	7.3	45
GRD07425	DDH	336	338	0.022	0.31	1.1	384	3.25	0.6	7	36
GRD07426	DDH	338	340	0.074	0.6	1.2	920	3.27	0.68	7.1	35
GRD07427	DDH	340	342	0.063	0.39	1	1070	3.36	1.06	7.3	35
GRD07428	DDH	342	344	0.028	0.11	1	451	3.3	0.88	6.1	59
GRD07429	DDH	344	346	0.019	0.63	1.8	1480	4.55	2.58	11.2	254
GRD07430	DDH	346	348	0.024	0.93	1.7	994	4.96	47.8	12.4	258
GRD07431	DDH	348	350	0.011	0.71	2.8	510	4.8	220	18.6	253
GRD07432	DDH	350	352	0.005	0.36	4	386	5.29	101	19.2	256
GRD07433	DDH	352	354	0.003	0.45	2.7	958	3.7	35.8	10.3	188
GRD07434	DDH	354	356	0.002	0.14	1.7	206	3.22	3.99	7.9	82
GRD07437	DDH	356	358	0.005	0.07	1.6	75.2	3.29	0.66	6.7	60
GRD07438	DDH	358	360	0.006	0.1	1.7	77	3.13	0.61	6.4	71
GRD07439	DDH	360	362	0.011	0.24	1.3	507	2.9	3.45	5.7	105
GRD07440	DDH	362	364	0.020	1.7	1.5	3190	3.25	1.79	7.8	111
GRD07441	DDH	364	366	0.027	1.74	1.8	2680	3.55	2.9	7.5	110
GRD07442	DDH	366	368	0.012	0.63	2.3	1535	3.93	37.3	14.2	107
GRD07443	DDH	368	370	0.044	2.01	4.7	3070	6.1	49.3	28	242
GRD07444	DDH	370	372	0.024	0.79	5.2	1650	5.67	67	24	184
GRD07445	DDH	372	374	0.013	0.32	1.2	655	3.16	1.69	7.6	71
GND07443	חטם	3,2	3/7	5.515	0.52	1.2	333	5.10	1.05	7.0	, 1

SampleID	Туре	From_m	To_m	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRD07446	DDH	374	376	0.035	0.48	0.9	669	3.16	1.06	7.9	43
GRD07447	DDH	376	378	0.056	0.97	1	935	3.28	13.6	8.4	49
GRD07448	DDH	378	380	0.022	0.36	1.1	395	3.3	1.05	8.1	58
GRD07449	DDH	380	382	0.018	1.3	2.3	1730	5.59	6.38	15.4	256
GRD07450	DDH	382	384	0.003	0.04	3.1	20.1	7.68	38.2	19	400
GRD07451	DDH	384	386	0.005	0.32	1.9	442	3.26	13.1	7.5	158
GRD07452	DDH	386	388	0.001	0.13	1.3	546	3.04	12.25	6.6	150
GRD07453		388	390	0.016	0.13	1.2	1075	3.14	45.3	9.8	130
GRD07454	DDH DDH	390	392	0.024	3.98	1.5	1765	2.95	133	11.4	112
GRD07455		392	394	0.038	1.16	1.4	1500	2.91	14.65	9.5	79
GRD07457	DDH	394	396	0.054	0.82	1.3	938	2.91	41.3	6.9	50
GRD07457	DDH	396	398	0.025	0.82	2.1	204	6.34	8.51	3.1	84
GRD07459	DDH	398	400	0.023	0.73	1.5	870	4.39	4.23	5.6	63
GRD07460	DDH	400	400	0.078	1.18	1.4	1530	2.83	1.37	9.9	66
GRD07460	DDH										
GRD07461 GRD07462	DDH	402 404	404 406	0.142	1.96 0.12	1.4	1955 185	2.7	48 3.79	7.3 5.9	50 51
	DDH										
GRD07463	DDH	406	408	0.040	0.36	2.2	931	2.79	3.08	7.1	58
GRD07464	DDH	408	410	0.013	0.33	2	280	2.89	1.02	6.9	38
GRD07466	DDH	410	412	0.029	0.41	2.1	461	2.89	0.88	6.5	41
GRD07467	DDH	412	414	0.008	0.1	2	215	2.77	42.2	7.5	57
GRD07468	DDH	414	416	<0.001	0.02	1.9	25.2	1.6	0.81	6.3	37
GRD07469	DDH	416	418	0.001	0.01	1.7	13.8	1.57	1.38	9	39
GRD07470	DDH	418	420	0.001	0.01	2.7	25.5	1.67	0.79	7.4	39
GRD07471	DDH	420	422	0.009	0.03	2.2	24.5	2.38	4	20.1	53
GRD07472	DDH	422	424	0.001	0.03	1.8	52.5	6.05	1.08	6	77
GRD07473	DDH	424	426	<0.001	0.02	1.3	56.5	6.78	0.65	4.1	80
GRD07474	DDH	426	428	0.001	0.03	1.4	43.5	5.16	1.13	12.2	77
GRD07475	DDH	428	430	0.002	0.04	2.1	46.5	1.58	1.29	11.8	35
GRD07476	DDH	430	432	<0.001	0.01	2.2	20.5	1.55	0.71	9.3	34
GRD07478	DDH	432	434	0.003	0.01	1.5	10.6	1.57	0.9	7.1	33
GRD07479	DDH	434	436	0.059	1.24	3.6	1565	2.59	123	20.9	51
GRD07480	DDH	436	438	0.048	0.42	11	483	2.91	1.51	6.6	36
GRD07481	DDH	438	440	0.037	0.3	3.7	358	2.96	14.15	6.4	39
GRD07482	DDH	440	442	0.025	0.2	5.8	238	2.95	3.49	6.7	39
GRD07483	DDH	442	444	0.008	0.07	4.1	86	3.12	1.36	6.9	40
GRD07484	DDH	444	446	0.056	0.45	1.9	448	2.93	1.1	7.8	38
GRD07485	DDH	446	448	0.074	0.43	1.8	481	3	2.52	7.6	40
GRD07486	DDH	448	450	0.053	0.42	1.8	459	3.48	3.73	9.3	58
GRD07487	DDH	450	452	<0.001	0.01	1.2	4.8	1.78	1.66	6.7	43
GRD07488	DDH	452	454	0.001	0.03	1.3	9.6	1.72	2.02	9.2	40
GRD07489	DDH	454	456	0.002	0.03	1.4	23.6	1.57	1.68	11.4	41
GRD07490	DDH	456	458	0.002	0.04	2.5	35.7	4.4	1.14	8.4	76
GRD07491	DDH	458	460	0.002	0.02	2	10.7	1.83	1.7	10	44
GRD07492	DDH	460	462	<0.001	0.02	1.5	15	1.89	1.65	9.5	43
GRD07493	DDH	462	464	<0.001	0.03	1.4	17.8	2.29	1.29	11.6	50

SampleID	Туре	From_m	To_m	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRD07494	DDH	464	466	0.002	0.08	2.1	40.2	5.01	1.91	6.3	92
GRD07495	DDH	466	468	0.004	0.06	2.2	68.8	6.47	0.96	3.8	89
GRD07496	DDH	468	470	0.010	0.16	0.8	153.5	3.07	1.05	5.9	43
GRD07498	DDH	470	472	0.056	0.86	1.1	757	4.77	37.3	5.8	72
GRD07500	DDH	472	474	0.001	0.05	1.3	50.8	7.45	0.74	2.5	96
GRD07501	DDH	474	476	0.038	0.28	1	365	3.45	71	5.9	46
GRD07502	DDH	476	478	0.043	0.29	2	363	4.33	4.55	5.6	61
GRD07503	DDH	478	480	0.193	0.97	1	1290	2.9	60.9	7.2	43
GRD07504	DDH	480	482	0.056	0.28	1.8	391	3.09	56.8	6.9	42
GRD07505	DDH	482	484	0.144	0.52	1.1	775	2.97	7.44	7.1	40
GRD07506	DDH	484	486	0.112	0.62	1	848	2.97	313	7.2	39
GRD07507	DDH	486	488	0.033	0.16	1	204	2.98	1.46	7.2	42
GRD07508	DDH	488	490	0.091	0.59	2.1	650	2.84	1.61	8.3	44
GRD07509		490	491.	0.235	1.94	1.8	2170	2.93	65.4	10.4	41