

Multiple shallow high-grade zones of copper mineralisation intersected at the Cyclops Prospect, Yeoval

- Maiden diamond drillhole GYDD001 from the Cyclops Prospect on the Yeoval tenement returns multiple zones of high-grade copper mineralisation with coincident gold, silver and molybdenum
- Copper mineralisation at Cyclops occurs as chalcopyrite ± bornite within chlorite-magnetiteepidote-quartz altered lodes associated with north-west striking shear zones
- Drill results from GYDD001 include:

•

- 18m @ 0.52% Cu from 118m, including:
 - 8m @ 1.01% Cu from 118m and
 - 4m @ 1.75% Cu from 122m;
- 14m @ 0.42% Cu from 88m, including:
- 2m @ 1.51% Cu from 94m;
- 4m @ 0.47% Cu from 214m;
- 4m @ 0.14g/t Au from 92m;
- 28m @ 338ppm Mo adjacent to the copper zone
- Recent soil sampling program, targeting strike extensions to the Cyclops Prospect, identified anomalous copper values west of GYDD001
- Strong potential for follow-up drill targets across prospect with multiple historic workings and shear zones observed during mapping and sampling field work
- Mineralisation remains open along strike, plus up and down dip

Godolphin Resources Limited (ASX: GRL) ("**Godolphin**" or the "**Company**") is pleased to advise that it has received the final assay results from the two-hole drill hole program and a soil sampling program at the Cyclops Prospect on the Company's 100%-owned Yeoval Tenement in central west NSW (EL8538).

Diamond drilling at Cyclops, located approximately 2km north of the Yeoval Mineral Resource, intersected multiple zones of shear-hosted high-grade copper mineralisation with coincident gold, silver and molybdenum mineralisation. Copper mineralisation greater than 1% was intersected in shear-hosted magnetite-chlorite-quartz-epidote lodes within the Naringla Granodiorite intrusive rock. Multiple intersections assaying greater than 1% copper were intersected within a broader low envelope of mineralisation adjacent to the shear zones. Mineralisation remains open along strike as well as up and down dip of the interpreted mineralised lodes. A soil sampling program adjacent to the Cyclops Prospect has identified anomalous copper immediately west of GYDD001.

Managing Director Ms Jeneta Owens said: *"To have intersected a number of high-grade zones close to surface, with the first diamond drill hole at the prospect, is highly encouraging. Further, these zones are all open in all directions, demonstrating the high exploration potential of the project.*

"The results from the initial diamond drilling and soil sampling have provided a better understanding of the mineralisation style. Initial assay results are similar to grade of other large mines in the region. Additional work will progress over the coming months to identify further mineralisation, including a ground based

Godolphin Resources

ASX Code: GRL ABN: 13 633 779 950

magnetic survey, which will assist in the design of a follow up drill campaign to advance a potential resource at Cyclops."

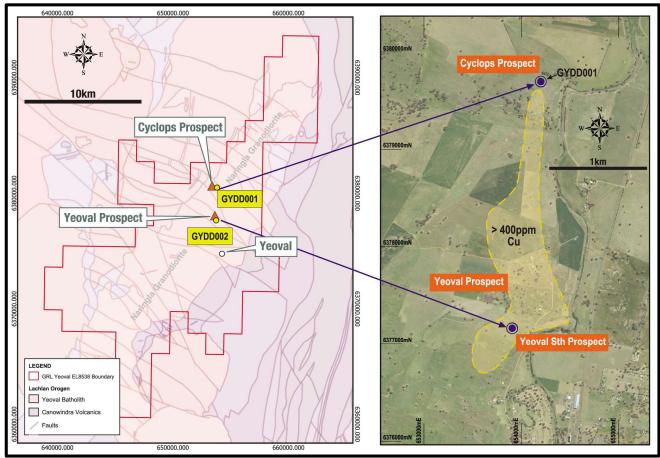


Figure 1: Location of drill hole GYDD001 at the Cyclops Prospect on the Yeoval tenement

Cyclops Prospect Drilling

Drill hole GYDD001 marks the Company's first diamond drill hole at the historic Cyclops Prospect. It was designed to test highly anomalous copper and gold results from historic soil and rock-chip samples, followup shallow reverse circulation percussion (RC) drilling, as well as test shallow historic workings. It was also intended that the drill hole could intersect any potential north-west striking structures which from previous data reviews may host the copper mineralisation.

Sulphide mineralisation at the Cyclops Prospect consists of chalcopyrite-pyrite-pyrrhotite ± bornitemolybdenum. Mineralisation is within magnetite-chlorite-quartz lodes associated with discreet shear or fault-related zones. Stringer sulphides and semi-massive sulphide zones are well developed in these lodes. Alteration at the prospect is typically stronger when proximal to the shear zones where strong to intense albitisation and chloritization of the host granodiorite has developed.

The mineralised copper intervals from GYDD001 include:

- 18m @ 0.52% Cu from 118m, including:
 - 8m @ 1.01% Cu from 118m and
 - 4m @ 1.75% Cu from 122m;
 - 14m @ 0.42% Cu from 88m, including:
 - 2m @ 1.51% Cu from 94m;

• 4m @ 0.47% Cu from 214m;

Other precious and base metal intercepts include:

- 4m @ 0.14g/t Au from 92m;
- 12m @ 3.3g/t Ag from 88m including:
 - 4m @ 6.3g/t Ag from 92m;
 - 14m @ 2.2g/t Ag from 118m including:
 - 4m @ **4.4g/t Ag** from 122m;
- 28m @ 338ppm Mo from 122m including:
 - 2m @ 0.12% Mo from 148m

Due to the lack of deeper drilling at the prospect, the mineralised intersections at the Cyclops Prospect remain open both along strike and up and down dip.

This single diamond drill hole has provided additional information that will assist the Company to gain a better understanding of the prospect's mineralisation style. The association between copper mineralisation and magnetite is demonstrated in all high-grade intercepts and this association will allow Godolphin to use magnetic geophysical methods to assist in defining the mineralisation below surface, plus define follow-up drilling.

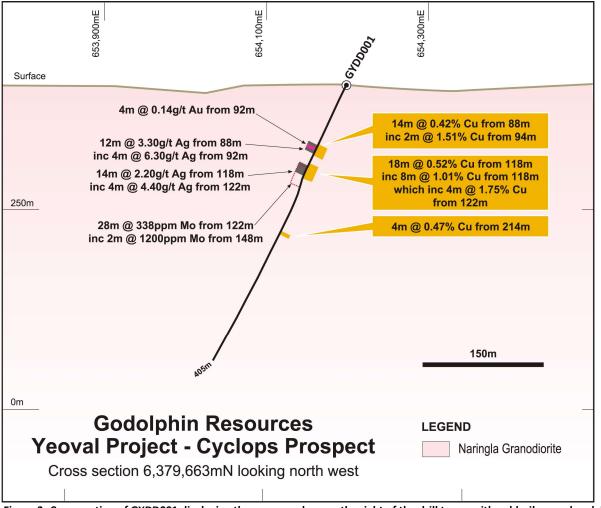


Figure 2: Cross section of GYDD001 displaying the copper values on the right of the drill trace, with gold, silver and molybdenum on the left

Figure 3. Image of GYDD001 core from 122m to 126m showing the albite-chlorite alteration intensity in the host granodiorite

Cyclops Soil Sampling

A 400 x 100m spaced soil sampling program was completed adjacent to the Cyclops Prospect while the drilling was in progress. The soil program was designed to test an area to west of the Cyclops Prospect for indications of mineralisation extensions. The soil sampling was completed using a hand auger, which allowed the Company to reach the soil 'C' horizon for sampling. The program identified weak to moderately anomalous copper in soils extending along strike from the historic workings and the drilling, suggesting mineralisation extends further west than what has previously been explored (Figure 4).

This area, along with the main Cyclops Prospect area will become the priority focus areas for a ground-based magnetic survey, which will identify magnetite alteration. As the mineralisation identified during the diamond drilling is associated with magnetite, this should prove an effective data set, combined with local structural mapping, to identify locations for follow-up RC drilling.

Figure 4. Location of the recent Cyclops Program soils program. Anomalous zone of >100ppm Cu occurs adjacent to and along strike of the recent drilling

<<ENDS>>

This market announcement has been authorised for release to the market by the Board of Godolphin Resources Limited.

For further information regarding Godolphin, please visit <u>https://godolphinresources.com.au/</u> or contact:

Jeneta Owens Managing Director +61 417 344 658 jowens@godolphinresources.com.au

Released through: Henry Jordan, Six Degrees Investor Relations, +61 431 271 538

About Godolphin Resources

Godolphin Resources (ASX: GRL) is an ASX listed resources company, with 100% controlled Australian-based projects in the Lachlan Fold Belt (**"LFB"**) NSW, a world-class gold-copper province. Currently the Company's tenements cover 3,200km² of highly prospective ground focussed on the Lachlan Transverse Zone, one of the key structures which controlled the formation of copper and gold deposits within the LFB. Additional prospectivity attributes of GRL tenure include the McPhillamy's gold hosting Godolphin Fault and the Boda gold-copper hosting Molong Volcanic Belt.

Godolphin is exploring for structurally hosted, epithermal gold and base-metal deposits and large, goldcopper Cadia style porphyry deposits and is pleased to announce a re-focus of exploration efforts for unlocking the potential of its East Lachlan tenement holdings, including increasing the mineral resource of its advanced Lewis Ponds Project. Reinvigoration of the exploration efforts across the tenement package is the key to discovery and represents a transformational stage for the Company and its shareholders.

COMPLIANCE STATEMENT The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Ms Jeneta Owens, a Competent Person who is a Member of the Australian Institute of Geoscientists. Ms Owens is the Managing Director and full-time employee of Godolphin Resources Limited. Ms Owens has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Owens consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Information in this announcement is extracted from reports lodged as market announcements referred to above and available on the Company's website <u>www.qodolphinresources.com.au</u>.

The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 Diamond Dnilling Entire drill holes were sampled on a 2m interval basis. Each sample was cut in half, with one half sent for assay analysis and the other stored for future use. All intervals were logged and recorded in GRL's standard templates and saved in the company database. Data includes: from and to measurements, colour, lithology, magnetic susceptibility, structures etc. Visible mineralisation content was logged as well as alteration and weathering. Soil Sampling Due to the deeper weathering nature of the regolith at the site samples are collected from the "c" soil horizon at depths up to 70cm deep or just above bedrock in shallow sub crop areas using a hand-held auger. The samples are screened to -2mm and are free of organic matter. In order to optimize the sample's ability to represent the mineralization, the samples are collected from the "c" horizon in order to mitigate the misrepresentation caused by transported material. These sampling methods are standard industry methods and are believed to provide acceptably representative samples for the type of mineralisation encountered.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details.	Diamond Drilling - Orientated diamond drilling (DD) with PQ core size to fresh rock then HQ core size using a triple tube for the remainder of the holes were used. Downhole surveys conducted every 30m (single shot) to monitor hole deviation. Multi-shot surveys were taken at the end of the hole whilst pulling the rods.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	Diamond Drilling • Drill core recovery was determined by comparing the drilled length of each interval with the physical core in the tray. The drill depth and drill run length data is recorded on the core blocks by the drilling company and checked by GRL geologists. • Some small intervals of core loss in the upper weathered zone of the granite, however overall estimated recovery was high.

ASX Code: GRL ABN: 13 633 779 950

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 <u>Diamond Drilling</u> The drill core was logged by a GRL geologist. The log includes detailed datasets for: lithology, alteration, mineralisation, veins, structure, geotechnical logs, core recovery and magnetic susceptibility. The data is logged by a qualified geologist and is suitable for use in any future geological modelling, resource estimation, mining and/or metallurgical studies Soil Sampling Samples logged with recording of colour and potential lithology based on nearby outcropping rock (noted in "comments"). Samples are sieved (-2mm) in the field before being placed into Calico bags.
Sub-sampling techniques and sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 <u>Diamond Drilling</u> Sample intervals were marked by the geologist using the lithology as guide. Sample lengths are not equal, but an average length of 2.0m was obtained for this program. The PQ and HQ core was split using a core saw and one half of each sample interval sent for assay analysis. QAQC was employed. A standard, blank or duplicate sample was inserted into the sample stream at regular intervals and at specific intervals based on the geologist's discretion. Standards were quantified industry standards. Sample sizes are appropriate for the nature of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Diamond Drilling • All GRL samples were submitted to ALS laboratories in Orange. • The samples were sorted, wet weighed, dried then weighed again. Primary preparation involved crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which was pulverised in a vibrating pulveriser. All coarse residues have been retained. • The samples have been analysed by firing a 50g (approx) portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of Gold, Platinum and Palladium in the sample. Au, Pd, Pt have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. • The lab routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. • GRL also inserted QAQC samples into the sample stream as mentioned above. • All of the QAQC data has been statistically assessed and if required a batch or a portion of the batch may be re-assayed. (no re-assays required for the data in the release). Verification of sampling and assaying. Soil Samples • Sample preparation and assaying is being conducted through ALS Laboratories, Orange NSW. • Gold is determined by 40g fire assay fusion with ICP-AES analysis to 0.01ppm LLD. Other elements by mixed acid digestion followed by ICPOES or ICPMS analysis. • Laboratory quality control standards (blanks, standards and duplicates) are inserted at a rate of 5 per 35 samples for ICP work. • GRL also inserts blank and standards at a frequenc
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data 	 The lab routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. GRL also inserted QAQC samples as mentioned above All of the QAQC data has been statistically assessed. GRL has undertaken its own further review of QAQC results of the ALS routine standards through a database consultancy indicating acceptable QAQC standards. The results are considered to be acceptable and suitable for reporting. All data and logging were recorded directly into field laptops. Visual validation as well as numerical validation was completed by two or more geologists.

Criteria	JORC Code explanation	Commentary
	 verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No adjustments to data have been undertaken
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Diamond Drilling • A DGPS was used to pick up collars with an averaged waypoint measurement: accuracy of less than 1m. • Coordinates picked up using WGS84 and transformed into Map Grid of Australia 1994 Zone 55 Soil Sampling • A handheld Garmin GPS map was used to pick up sampling points with an averaged waypoint measurement: accuracy of 1-5m
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Early-stage drilling program for the Cyclops Prospect at Yeoval. Targets are mineralised NW trending shear zones within a granodiorite host rock. As a result, the drill density at the prospect is deemed sufficient to test the target. Soil sampling was conducted on a 400 x 100m spaced grid.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Mineralisation at the Cyclops Prospect is interpreted to be a copper-gold deposit related to NW trending shear zones cross cutting the Naringla Granodiorite. Orientation of the drillhole was designed to be perpendicular to the NW trending shear zone and deemed suitable to target the mineralisation. No significant bias is likely as a result of the pattern of intersection angles.
Sample security	The measures taken to ensure sample security.	 Care has been taken for this program to have standard procedures for sample processing. These have been simple and industry standard to avoid sample bias. All samples were collected and accounted for by GRL employees/consultants during drilling. All logging was done by GRL personnel. All samples were bagged into calico bags by GRL personnel. Diamond Drill core was collected daily from the site and taken to the GRL shed in Orange. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received are routinely followed up and accounted for.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Surveys, Assays, Geology., previous resource estimates were studied for factors likely to introduce bias, up or down.

Secti	on 2 Reporting	of Exploration	Results	(Criteria listed	in the preceding	section also	apply to this section.)	
-------	----------------	----------------	---------	------------------	------------------	--------------	-------------------------	--

Criteria	JORC Code explanation	Commentary
Mineral	• Type, reference	Yeoval Project Area - Cyclops Prospect
tenement and land tenure	name/number, location and	The Yeoval project is located surrounding the township of Yeoval in NSW and has an elevation between 200 m and 500 m above sea-level.
status	ownership including	The exploration rights to the project are owned 100% by the Godolphin Resources through the granted exploration licence EL8358
	agreements or material issues with	• The Cyclops deposit, on which the aforementioned results have been discussed is on private freehold land over which GRL holds the exploration rights.
	third parties such as	There is no Joint venture or any other arrangements pertaining to this project, and no native title claims over the area.
	joint ventures, partnerships,	• The security deposit paid by GRL for EL8538 is \$10,000.
	overriding royalties,	
	native title interests,	
	historical sites,	
	wilderness or national	
	park and environmental	
	settings.	
	• The security of the	
	tenure held at the time	
	of reporting along with	
	any known	
	impediments to obtaining a license to	
	operate in the area.	
Exploration	Acknowledgment and	Yeoval & Cyclops
done by other	appraisal of	Yeoval - See ASX announcements by Ardea (ASX: ARL) 15 August 2019, GRL 7 October 2021 and 23 March 2022.
parties	exploration by other	Cyclops – See ASX announcements by GRL 7 October 2021 and 23 March 2022
	parties.	
Geology	Deposit type, seclarized acting and	Yeoval
	geological setting and style of	Geology
	mineralization.	EL8538 covers a large portion of the Early Devonian Yeoval Batholith including felsic to mafic intrusives of the Yeoval Intrusive Complex.
		The Yeoval Complex is strongly fractionated and comprised of various intermediate intrusive lithologies – granite, quartz monzodiorite, quartz diorite, microgranodiorite, granodiorite, diorite and gabbro (Pogson et al 1998). The more fractioned intermediate phases are highly prospective for porphyry copper - molybdenum ± gold mineralisation.
		This Yeoval intrusive complex formed during a Late Silurian to Early Devonian melting and rifting event that split the Ordovician to Early Silurian Macquarie Arc. Its chemistry is shoshonitic, in common with the Ordovician volcanic rocks that host the Cadia and Northparkes porphyry copper-gold deposits, and a similar mantle source and mineral potential is inferred. The south- eastern portion of the licence area hosts the Silurian aged Canowindra Volcanics - garnetiferous quartz-feldspar-cordierite tuffs, ashstone and breccias. A core of Ordovician sandstone, siltstone and minor limestone from the Kabadah Formation found within the Silurian sediments and volcanics. This area is considered prospective for low sulphidation Au-Ag mineralisation similar in style to the Ardea Mt Aubrey gold deposit to the south-west of the area.

Criteria	JORC Code explanation	Commentary								
		Emplacement of intrusives and extrust	ves in the Ea	arly Devonian which are	e related to the Boggy Plain	Supersuite have giver	n rise to intrusive rela	ated minera	alisation.	
		Numerous copper-gold occurrences a quartz-magnetite-chalcopyrite veining setting. Minor occurrences of copper Prospect in the south-west of the licen Mineralisation hosted within the Yeova	within structu ± gold minel ce area. Sca	ures inferred within the ralisation are present ttered copper-gold pro-	granodiorite, at the Goodri within the microgranite and spects also occur within the	ch Mine. The style of t granite of the Yeoval Silurian and Devoniar	the mineral occurren Complex. Minor mon sequences east of	nces is india olybdenum the Yeoval	cative of a por is reported a Batholith.	rphyry copper-go t the Martins Re
Drill hole	A summary of all	Total drilling at Yeoval EL8538 during	this campaig	n was 806 7 meters co	omorising of:					
Information	A summary of all information material	2 diamond Holes	uns campaig							
mormation	to the understanding	Drill hole information from	this drilling is	s presented in the table	e helow.					
	of the exploration	Hole ID	Hole	Lease ID	MGA55 East	MGA55 North	MGA_RL	Dip	MGA	Depth m
	results including a		Туре	20000 12				_ .p	Azi	2000
	tabulation of the	GYDD001	DD	EL8538	654197.7	6379708.4	425.841	-55	235	405.4
	following information	GYDD002	DD	EL8538	653901.2	6377158.3	400.86	-55	355	491.3
	for all Material drill holes:	0700002	00	220000	000001.2	0011100.0	100.00	00	000	101.0
methods	 weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for 									
	such aggregation should be stated and some typical examples of such aggregations should									
Relationship	such aggregation should be stated and some typical examples of such	The holes were drilled at an average	of -55° declin	nation						

Criteria	JORC Code explanation	Commentary
mineralization widths and intercept lengths	 important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 The mineralisation at the Cyclops Prospect is suggested as being shallow dipping and trending in a NW direction.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Diagrams pertaining to this drilling program can be found I the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Results.	 All results of Ardea's and Godolphin's exploration results have been reported in previous ASX releases Drill Sample results were composited to 2 m intervals/composites

Criteria	JORC Code explanation	Commentary
Other	Other exploration	See Ardea Resources Ltd (ASX: ARL) ASX release 15 August 2019 and GRL 7 October 2021 and 23 March 2022.
substantive	data, if meaningful	
exploration	and material, should	
data	be reported including	
	(but not limited to):	
	geological	
	observations;	
	geophysical survey	
	results; geochemical	
	survey results; bulk	
	samples – size and	
	method of treatment;	
	metallurgical test	
	results; bulk density,	
	groundwater,	
	geotechnical and rock	
	characteristics;	
	potential deleterious	
	or contaminating	
E. the second	substances.	
Further work	• The nature and scale	Currently under assessment
	of planned further	
	work (eg tests for	
	lateral extensions or	
	depth extensions or	
	large-scale step-out	
	drilling).	

Appendix 2: Table of Drill sample results discussed in this ASX release. (Note: This is a complete list of samples, but not of all the elements. A complete list can be requested and supplied pending GRL Board approval).

GYDD001 – Cyclops Prospect												
SampleID	Туре	From_m	To_m	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm	
GRD07040	DDH	10	12	0.002	0.02	0.9	54.6	3.88	0.49	14.4	81	
GRD07041	DDH	12	14	0.001	0.02	1.5	87.4	3.97	0.61	13	90	
GRD07042	DDH	14	16	0.002	0.03	1.4	76.7	4.15	0.52	11.3	57	
GRD07043	DDH	16	18	0.001	0.01	1.2	54.2	4.27	0.56	14	57	
GRD07044	DDH	18	20	0.001	0.01	1.8	120	4.56	0.76	11.4	62	
GRD07045	DDH	20	22	0.001	0.02	3.5	112.5	5.01	0.75	17.7	83	
GRD07046	DDH	22	24	0.011	0.12	3.6	65.3	4.85	0.66	17.2	86	
GRD07047	DDH	24	26	0.004	0.36	2.5	63.1	4.33	0.56	10.9	65	
GRD07048	DDH	26	28	0.005	0.1	2.3	44.4	4.32	0.54	9.8	64	
GRD07049	DDH	28	30	0.029	0.31	2.3	34.9	4.31	0.48	9.3	62	
GRD07050	DDH	30	32	0.007	0.29	1.6	34.6	4.21	0.58	9.3	53	
GRD07051	DDH	32	34	0.011	0.23	1.7	30.8	4.26	0.48	8.9	53	
GRD07052	DDH	34	36	0.004	0.07	2.7	40	4.83	1.47	14.8	96	
GRD07053	DDH	36	38	0.004	0.08	3	1535	5.7	1.31	20.3	104	
GRD07054	DDH	38	40	0.003	0.04	1	89.8	4.27	0.55	9.7	53	
GRD07055	DDH	40	42	0.004	0.05	1.8	20.1	4.18	0.48	8.4	50	
GRD07056	DDH	42	44	0.006	0.07	1.3	21.7	4.28	0.83	7.9	51	
GRD07057	DDH	44	46	0.004	0.07	1.5	29.1	4.16	0.74	7.6	49	
GRD07058	DDH	46	48	0.005	0.11	1.4	38.3	4.18	0.62	8.8	49	
GRD07059	DDH	48	50	0.006	0.12	2	43.1	4.23	0.66	9.1	49	
GRD07061	DDH	50	52	0.003	0.14	0.9	45	4.46	0.68	9.1	49	
GRD07062	DDH	52	54	0.006	0.09	3	1940	4.68	1.06	18	73	
GRD07063	DDH	54	56	0.002	0.03	2.3	451	5.39	3.04	20.2	93	
GRD07064	DDH	56	58	0.002	0.02	2.5	100	4.68	0.89	11.4	70	
GRD07065	DDH	58	60	0.004	0.04	2.9	343	5.56	3	12.2	78	
GRD07066	DDH	60	62	0.003	0.05	2.6	158	5.7	4.36	12	79	
GRD07067	DDH	62	64	0.003	0.03	2.4	98.5	4.52	1.04	9.7	74	
GRD07068	DDH	64	66	0.013	0.24	1.7	102	4.77	0.9	14.6	82	
GRD07070	DDH	66	68	0.005	0.05	1.8	64.3	4.42	0.36	10.3	66	
GRD07071	DDH	68	70	0.008	0.06	1.5	66.3	4.41	0.32	11	70	
GRD07072	DDH	70	72	0.004	0.04	1	41.1	4.21	0.41	8.4	59	
GRD07073	DDH	72	74	0.028	0.19	<0.2	38.3	4.41	0.44	8.5	63	
GRD07074	DDH	74	76	0.016	0.05	1.8	46.1	6.4	1.7	8.8	103	
GRD07075	DDH	76	78	0.002	0.04	2.3	123	5.7	3.29	9.7	103	
GRD07076	DDH	78	80	0.009	0.12	2	23.8	4.62	0.71	10.2	73	
GRD07077	DDH	80	82	0.010	0.23	2	27.3	4.14	0.48	10.8	55	
GRD07078	DDH	82	84	0.013	0.18	2	89.3	4.29	1.65	13	68	
GRD07079	DDH	84	86	0.008	0.11	1.2	29.3	4.37	0.52	8.4	50	
GRD07081	DDH	86	88	0.011	0.14	2.1	372	5.5	10.45	11.2	81	
GRD07082	DDH	88	90	0.007	0.1	2.7	4370	7.56	6.75	22	122	
GRD07083	DDH	90	92	0.012	0.16	2.3	828	4.58	0.55	16.2	98	
GRD07084	DDH	92	94	0.010	0.17	2.6	4140	6.16	1.98	27.3	110	
		-				· ·	-		-	-		

GYDD001 – Cyclops Prospect

Godolphin Resources

ASX Code: GRL ABN: 13 633 779 950 A: Unit 13, 11-19 William Street, Orange NSW 2800 P: +61 2 6318 8144 E: info@godolphinresources.com.au www.godolphinresources.com.au

SampleID	Туре	From_m	To_m	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRD07085	DDH	94	96	0.015	0.16	2.4	15050	9.69	7.22	36.2	115
GRD07086	DDH	96	98	0.024	0.35	1.8	3190	10.1	7.78	18.4	124
GRD07087	DDH	98	100	0.009	0.07	2.2	1405	12.35	20.2	17.5	146
GRD07088	DDH	100	102	0.032	0.19	1.7	226	3.87	1.52	13.6	77
GRD07089	DDH	102	104	0.006	0.07	2	73.1	4.5	0.47	9.9	65
GRD07090	DDH	104	106	0.009	0.13	1.6	262	4.7	1.64	10.1	64
GRD07091	DDH	106	108	0.007	0.09	2	152.5	4.52	0.58	12.7	71
GRD07092	DDH	108	110	0.013	0.17	1.8	344	4.09	1.79	11.2	63
GRD07093	DDH	110	112	0.004	0.08	1.5	430	4.65	2.97	16.8	77
GRD07094	DDH	112	114	0.007	0.08	1.7	170.5	4.31	3.96	21.2	75
GRD07095	DDH	114	116	0.014	0.27	1.4	736	5.25	14.3	24.3	80
GRD07096	DDH	116	118	0.026	0.4	1.8	122	8.09	63.8	24.6	134
GRD07097	DDH	118	120	0.148	3.92	1.9	3780	6.89	23.1	23.2	145
GRD07098	DDH	120	122	0.025	0.34	1.6	1725	6.37	46.9	16.8	104
GRD07101	DDH	122	124	0.018	0.22	2.4	17600	13.35	421	19.4	250
GRD07102	DDH	124	126	0.026	0.49	2.3	17400	9.13	498	15.2	224
GRD07103	DDH	126	128	0.012	0.08	1.5	1315	6.04	52.5	12.8	134
GRD07104	DDH	128	130	0.004	0.22	1.7	1160	5.04	75.7	9.4	128
GRD07105	DDH	130	132	0.011	0.17	2	3230	6.93	206	10.7	209
GRD07106	DDH	132	134	0.027	0.35	2.3	365	6.04	43.9	10.4	126
GRD07107	DDH	134	136	0.030	0.6	1.7	572	9.82	475	13.4	213
GRD07108	DDH	136	138	0.015	0.3	2.3	367	7.97	235	32.2	281
GRD07109	DDH	138	140	0.014	0.19	3.1	647	16.15	796	129	476
GRD07110	DDH	140	142	0.022	0.26	1.8	553	8.35	164	63.1	307
GRD07111	DDH	142	144	0.025	0.28	2.2	638	7.73	113.5	64.6	155
GRD07112	DDH	144	146	0.031	0.49	3.5	892	8.52	185	43.7	222
GRD07113	DDH	146	148	0.132	0.56	2.6	360	7.19	260	7.9	123
GRD07114	DDH	148	150	0.284	1.44	2.1	563	18.05	1200	18.6	215
GRD07115	DDH	150	152	0.026	0.34	2.7	150	4.94	8.57	25.3	69
GRD07116	DDH	152	154	0.029	0.58	2	88.1	4.84	6.92	13.1	68
GRD07117	DDH	154	156	0.026	0.41	2.2	70.4	4.89	13.9	10.4	67
GRD07118	DDH	156	158	0.041	0.34	3.1	242	5.69	18.65	12	93
GRD07119	DDH	158	160	0.052	0.81	2.5	309	5.61	17.85	13.4	94
GRD07121	DDH	160	162	0.073	0.96	3.2	52.8	6.11	4.32	11.1	85
GRD07122	DDH	162	164	0.332	6.52	3.8	312	7.01	34	35	181
GRD07123	DDH	164	166	0.035	0.53	2.1	110	3.84	3.08	10.8	59
GRD07124	DDH	166	168	0.013	0.32	2.6	452	5.21	3.44	21.8	95
GRD07125	DDH	168	170	0.011	0.15	2.7	41	4.72	0.89	15.4	99
GRD07126	DDH	170	172	0.050	0.8	2.8	29.5	5.26	1.67	11	98
GRD07127	DDH	172	174	0.014	0.13	2.3	53.4	4.9	0.73	9.1	73
GRD07128	DDH	174	176	0.113	1.22	1.5	59	4.65	0.99	11	91
GRD07130	DDH	176	178	0.040	0.5	2	30.4	3.74	1.42	17.4	71
GRD07131	DDH	178	180	0.003	0.03	2.1	549	4.84	5.28	13.2	142
GRD07132	DDH	180	182	0.003	0.07	2	492	5.73	33.4	10.6	162
GRD07133	DDH	182	184	0.009	0.07	2.1	530	4.99	16	11.8	154

SampleID	Туре	From_m	To_m	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRD07134	DDH	184	186	0.024	0.36	1.8	61.5	4.85	1.93	11.2	93
GRD07135	DDH	186	188	0.002	0.13	1.7	169.5	4.79	1.89	11	87
GRD07136	DDH	188	190	0.019	0.26	1.9	181.5	5.77	6.84	20.6	142
GRD07137	DDH	190	192	0.032	0.48	1.1	46	6.84	1.85	13	142
GRD07138	DDH	192	194	0.010	0.1	1.9	248	5.73	5.28	24.9	184
GRD07139	DDH	194	196	0.206	1.02	1.8	72.7	5.15	1.16	19.4	135
GRD07141	DDH	196	198	0.271	1.98	1.8	78.2	4.62	0.82	11.4	80
GRD07142	DDH	198	200	0.229	0.91	2	36.9	4.08	0.57	9.6	55
GRD07143	DDH	200	202	0.040	0.27	1.7	36.3	4.24	0.64	9.1	57
GRD07144	DDH	202	204	0.047	0.34	1.6	38	4.25	0.48	7.6	57
GRD07145	DDH	204	206	0.183	1.17	1.6	47.4	4.35	0.51	8.5	46
GRD07146	DDH	206	208	0.242	1.74	1.5	29	5.04	0.69	6.8	59
GRD07147	DDH	208	210	0.121	0.59	2.3	39.3	8.92	1.16	3.7	116
GRD07148	DDH	210	212	0.002	0.04	1.6	70	4.18	0.71	8.6	57
GRD07149	DDH	212	214	0.195	4.09	1.9	51	4.53	0.56	13.1	85
GRD07150	DDH	214	216	0.029	0.42	3.2	5190	7.76	102	84.2	200
GRD07151	DDH	216	218	0.015	0.32	2.3	4210	6.53	56.7	103	220
GRD07152	DDH	218	220	0.016	0.19	1.5	83.9	5.26	0.74	41.8	140
GRD07153	DDH	220	222	0.051	0.96	2	558	7.18	2.13	47.8	261
GRD07154	DDH	222	224	0.013	0.3	1.5	59	4.59	0.57	14.7	83
GRD07155	DDH	224	226	0.007	0.1	1.7	50.7	5.16	0.82	12.3	76
GRD07156	DDH	226	228	0.057	1.35	0.9	23.7	4.51	0.53	8	54
GRD07157	DDH	228	230	0.030	0.39	1.1	23.9	4.52	0.58	7.4	48
GRD07158	DDH	230	232	0.049	0.49	0.7	22.5	4.56	0.66	7	47
GRD07161	DDH	232	234	0.038	0.56	0.8	98.4	4.48	0.75	7.4	50
GRD07162	DDH	234	236	0.044	0.6	0.6	25.2	4.41	0.65	7.4	49
GRD07163	DDH	236	238	0.115	1.24	1.3	201	4.57	6.83	10.7	58
GRD07164	DDH	238	240	0.071	0.94	1.1	44.2	4.58	1.16	9.1	65
GRD07165	DDH	240	242	0.045	0.59	0.4	33.6	4.47	1.33	8.1	53
GRD07166	DDH	242	244	0.040	0.55	0.8	56.5	4.59	1.3	7.9	52
GRD07167	DDH	244	246	0.054	0.94	1	38	4.65	0.98	7.5	53
GRD07168	DDH	246	248	0.064	1.1	0.9	38.1	4.6	1.02	7.8	56
GRD07169	DDH	248	250	0.090	2.27	1.4	77.6	4.47	4.99	10.7	61
GRD07170	DDH	250	252	0.188	25	0.8	112.5	4.47	4.36	9.2	64
GRD07171	DDH	252	254	0.061	0.66	1.2	71.8	4.57	1.78	9.6	61
GRD07172	DDH	254	256	0.085	1.12	0.8	83.6	4.61	1.28	11.2	60
GRD07173	DDH	256	258	0.035	0.4	1	59.5	4.69	1.08	9.5	58
GRD07174	DDH	258	260	0.047	0.81	0.8	40.2	4.58	1.37	8.2	52
GRD07175	DDH	260	262	0.143	3.37	1	59.2	4.62	0.9	9	56
GRD07176	DDH	262	264	0.097	2.37	1	43.9	4.63	0.94	9.1	57
GRD07177	DDH	264	266	0.109	0.99	0.9	35.4	4.49	0.96	10.9	53
GRD07178	DDH	266	268	0.035	0.39	0.6	62.5	4.56	1.12	10.2	56
GRD07179	DDH	268	270	0.037	0.31	0.3	32.3	4.5	0.89	11.1	58
GRD07181	DDH	270	272	0.055	0.95	1.6	50.3	4.45	0.63	9.5	67
GRD07182	DDH	272	274	0.053	0.46	1.6	421	5.64	1.94	23.9	191

SampleID	Туре	From_m	To_m	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRD07183	DDH	274	276	0.045	0.38	1.3	51.1	4.65	0.61	17	74
GRD07184	DDH	276	278	0.015	0.4	2.1	47.2	4.4	0.84	12.3	65
GRD07185	DDH	278	280	0.023	0.3	1.8	45.3	3.78	0.53	13.4	55
GRD07186	DDH	280	282	0.045	0.44	1.2	50.9	4.13	0.63	13.1	56
GRD07187	DDH	282	284	0.463	5.51	1.2	46.2	3.91	0.81	11.8	57
GRD07188	DDH	284	286	0.070	0.75	1.5	49.9	3.72	0.56	10.5	55
GRD07190	DDH	286	288	0.096	0.41	0.9	22.9	3.57	0.53	10.6	50
GRD07191	DDH	288	290	0.004	0.08	0.3	26.5	4.46	0.54	9.5	57
GRD07192	DDH	290	292	0.002	0.05	0.6	28.3	4.36	0.51	10.6	56
GRD07193	DDH	292	294	0.049	0.75	0.7	25.4	4.65	0.52	8.7	61
GRD07194	DDH	294	296	0.001	0.04	0.9	29.6	4.54	0.66	9.8	60
GRD07195	DDH	296	298	0.022	0.36	1	29.2	3.84	0.66	10.8	55
GRD07196	DDH	298	300	0.021	0.26	0.9	42.1	4.27	1.35	9.3	62
GRD07197	DDH	300	302	0.048	0.33	0.3	35.3	4.26	1.24	10.2	58
GRD07198	DDH	302	304	0.017	0.21	0.8	39.6	4.62	1.1	9	65
GRD07199	DDH	304	306	0.048	0.82	0.6	46.7	3.58	1.32	9.7	54
GRD07201	DDH	306	308	0.005	0.11	0.7	39.9	4.31	1.92	9.2	67
GRD07202	DDH	308	310	0.004	0.06	0.7	43.6	4.72	1.4	8.3	69
GRD07203	DDH	310	312	0.034	0.26	1.7	30.5	4.89	0.48	8.1	67
GRD07204	DDH	312	314	0.014	0.23	1.6	21.6	4.72	0.33	6.4	66
GRD07205	DDH	314	316	0.005	0.11	0.9	40.7	4.46	1.14	8.7	74
GRD07206	DDH	316	318	0.027	0.33	0.3	48.5	4.43	1.29	11.6	78
GRD07207	DDH	318	320	0.102	0.56	0.3	65.2	4.48	1.44	10.5	74
GRD07208	DDH	320	322	0.006	0.06	0.6	56.5	4.49	1.26	10	71
GRD07209	DDH	322	324	0.022	0.31	0.6	64	4.62	1.6	9	72
GRD07210	DDH	324	326	0.074	0.6	0.9	52.1	4.47	1.47	11.6	81
GRD07211	DDH	326	328	0.063	0.39	0.9	63	4.5	1.18	25.2	98
GRD07212	DDH	328	330	0.028	0.11	0.9	79.4	4.55	0.78	20.1	101
GRD07213	DDH	330	332	0.019	0.63	0.3	78.1	4.49	0.95	16.7	92
GRD07214	DDH	332	334	0.024	0.93	0.2	69.7	4.48	1.08	9.3	75
GRD07215	DDH	334	336	0.011	0.71	0.3	70.2	4.53	1.12	9.1	69
GRD07216	DDH	336	338	0.005	0.36	0.3	65.2	4.45	0.69	7.3	64
GRD07217	DDH	338	340	0.003	0.45	0.8	77.4	4.45	0.64	8.1	63
GRD07218	DDH	340	342	0.002	0.14	<0.2	78.3	4.34	0.86	6.5	52
GRD07221	DDH	342	344	0.005	0.07	0.7	162.5	5.37	0.84	6.8	71
GRD07222	DDH	344	346	0.006	0.1	0.6	44.1	4.12	0.7	7.5	50
GRD07223	DDH	346	348	0.011	0.24	0.5	57.8	4.11	0.68	8.9	59
GRD07224	DDH	348	350	0.020	1.7	1	55	4.17	0.65	8.1	58
GRD07225	DDH	350	352	0.027	1.74	0.9	63.8	4.45	0.96	8.3	61
GRD07226	DDH	352	354	0.012	0.63	0.4	47.7	4.25	0.87	7.2	54
GRD07227	DDH	354	356	0.044	2.01	0.5	45.3	4.36	1	8.2	54
GRD07228	DDH	356	358	0.024	0.79	0.5	41.7	4.45	1.28	6.9	55
GRD07229	DDH	358	360	0.013	0.32	0.3	43.5	4.72	1.16	5.9	63
GRD07230	DDH	360	362	0.035	0.48	<0.2	52.3	4.25	0.64	7.8	71
GRD07231	DDH	362	364	0.056	0.97	1	45.4	5.79	0.7	6.5	75

SampleID	Туре	From_m	To_m	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRD07232	DDH	364	366	0.022	0.36	0.2	29.6	4.18	0.46	6.5	50
GRD07233	DDH	366	368	0.018	1.3	0.9	37.3	4.31	0.52	14.3	68
GRD07234	DDH	368	370	0.003	0.04	0.4	36	4.58	0.74	11.8	64
GRD07235	DDH	370	372	0.005	0.32	0.5	32.6	4.57	0.6	7.6	60
GRD07236	DDH	372	374	0.001	0.13	0.5	91.1	4.68	0.65	26	114
GRD07237	DDH	374	376	0.016	0.61	0.5	55	4.51	0.82	8	53
GRD07238	DDH	376	378	0.024	3.98	0.3	63.7	4.46	1.26	18.8	76
GRD07239	DDH	378	380	0.038	1.16	1.1	51.7	4.59	0.85	17.2	76
GRD07241	DDH	380	382	0.054	0.82	0.5	46.3	4.57	0.76	11.1	61
GRD07242	DDH	382	384	0.025	0.2	1.1	84.3	5.39	1.46	18	113
GRD07243	DDH	384	386	0.078	0.73	1.3	184.5	5.53	1.56	21	88
GRD07244	DDH	386	388	0.064	1.18	2.6	27.4	3.63	0.88	17.2	73
GRD07245	DDH	388	390	0.142	1.96	1.9	27.3	3.98	0.74	13.5	86
GRD07246	DDH	390	392	0.007	0.12	2	126.5	4.39	0.65	22.5	110
GRD07247	DDH	392	394	0.040	0.36	1.3	17.9	4.65	0.7	9.5	56
GRD07248	DDH	394	396	0.013	0.33	1.6	58.1	4.06	0.62	12	80
GRD07250	DDH	396	398	0.029	0.41	1.5	43.3	4.31	0.74	9.6	69
GRD07251	DDH	398	400	0.008	0.1	1.7	40.7	3.81	0.75	11.6	73
GRD07252	DDH	400	402	<0.001	0.02	1.6	47.2	3.3	1.04	19.3	102
GRD07253	DDH	402	404	0.001	0.01	1.7	241	5.43	1.01	20.8	155
GRD07254	DDH	404	406	0.001	0.01	1.4	25.4	4.71	0.6	11.9	64

Appendix 3: Table of soil sample results discussed in this ASX release. (Note: This is a complete list of samples, but not of all the elements. A complete list can be requested and supplied pending GRL Board approval).

SampleID	Туре	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRS03397	Soil	0.001	0.068	4.74	38.2	3.84	0.46	15.1	57.4
GRS03398	Soil	0.002	0.039	4.88	34.2	3.62	0.71	17.25	49.3
GRS03399	Soil	0.002	0.05	4.79	46.1	4.35	0.68	19.95	58.2
GRS03400	Soil	0.001	0.062	3.8	91.5	6.03	0.64	29.3	122.5
GRS03401	Soil	0.005	0.263	2.43	125	4.87	0.59	57	679
GRS03402	Soil	0.002	0.09	3.46	85.3	5.25	0.67	38.5	135.5
GRS03403	Soil	0.002	0.076	4.58	47.4	4.62	0.47	17.7	62.7
GRS03404	Soil	0.001	0.061	4.24	41.6	3.9	0.46	16.8	52
GRS03405	Soil	0.001	0.052	3.42	37.6	3.18	0.44	15.85	46.2
GRS03406	Soil	0.002	0.032	4.01	34.4	3.44	0.37	13.35	47.1
GRS03407	Soil	0.002	0.106	4.45	39.6	4.03	0.44	15.3	51.3
GRS03408	Soil	0.001	0.082	2.91	54.3	3.99	0.49	16.4	65.4
GRS03409	Soil	0.001	0.057	2.15	31.2	2.75	0.68	19.15	62
GRS03410	Soil	0.002	0.163	3.7	53.9	3.93	0.55	19.7	60.6
GRS03411	Soil	0.001	0.102	3.74	55.8	4.32	0.66	19.7	54.6
GRS03412	Soil	0.002	0.127	4.91	64.5	5.82	0.59	20.5	71.5
GRS03413	Soil	0.005	0.339	3.17	104.5	4.96	0.93	138	344
GRS03414	Soil	0.002	0.038	3.98	79.4	5.47	0.52	18.85	62.3
GRS03415	Soil	0.001	0.053	1.54	68.8	4.55	0.48	10.2	51.1
GRS03418	Soil	0.001	0.048	3.65	51.3	5.39	0.7	14.2	52
GRS03419	Soil	0.001	0.177	1.43	44.1	3.79	0.52	21.6	83
GRS03420	Soil	0.001	0.073	1.53	32	3.34	0.47	12.5	58.7
GRS03421	Soil	0.002	0.068	4.33	48.5	4.72	0.65	31.6	77.1
GRS03422	Soil	< 0.001	0.062	3.31	23	2.88	1.6	13.65	58.2
GRS03423	Soil	<0.001	0.037	1.98	26	3.57	0.72	12.85	44.3
GRS03424	Soil	0.003	0.121	4.36	51.8	4.26	0.4	16.45	65.2
GRS03425	Soil	0.001	0.069	2.49	67.5	5.66	0.52	18.15	83.7
GRS03426	Soil	0.004	0.157	2.64	41.2	5.05	0.93	38.9	158.5
GRS03427	Soil	0.001	0.053	2.19	19.55	2.11	0.41	11.7	27.9
GRS03429	Soil	<0.001	0.038	2.35	23.5	2.78	0.69	20.5	46.2
GRS03430	Soil	<0.001	0.038	2.34	9.72	1.37	0.54	9.53	15.4
GRS03431	Soil	<0.001	0.028	3.18	10.25	1.78	0.67	9.91	16.9
GRS03432	Soil	0.001	0.094	4.21	58.6	5.26	0.44	27	121
GRS03433	Soil	0.001	0.049	2.46	31.7	4.31	0.51	10.1	47.8
GRS03434	Soil	0.002	0.066	4.23	54	5.36	0.54	17.5	66.6
GRS03435	Soil	0.001	0.094	2.89	58.8	3.92	0.69	23.4	63.9
GRS03436	Soil	0.002	0.154	3.41	65.7	4.31	0.63	27.4	95.5
GRS03437	Soil	0.001	0.054	2.63	60.6	4.76	0.82	13.4	134
GRS03441	Soil	0.001	0.085	1.88	34.7	3.29	0.55	18.65	50.8
GRS03442	Soil	0.001	0.084	3.84	53.4	4.88	0.74	15.75	66.9
GRS03443	Soil	<0.001	0.025	2.45	20.4	3.43	0.78	9.7	43
GRS03444	Soil	<0.001	0.034	2.39	13.85	2.83	0.83	9.34	28.5

SampleID	Туре	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRS03445	Soil	<0.001	0.023	2.46	19.55	4.31	0.94	9.81	38
GRS03446	Soil	< 0.001	0.023	2.69	9.47	2.69	1.16	13.25	20.8
GRS03447	Soil	< 0.001	0.023	1.75	10.7	2.76	0.77	8.8	29.2
GRS03448	Soil	< 0.001	0.027	2.35	14.45	3.39	0.78	10.55	30.6
GRS03449	Soil	0.001	0.059	3.63	21.3	4.01	0.72	15	45.9
GRS03450	Soil	< 0.001	0.031	2.09	15.7	2.76	0.71	9.79	30.2
GRS03451	Soil	< 0.001	0.046	2.38	23.6	3.08	0.71	11.45	37.4
GRS03452	Soil	< 0.001	0.025	1.55	9.69	1.51	0.63	9.15	18.7
GRS03453	Soil	<0.001	0.023	1.67	15.55	3.41	0.78	10.75	44.8
GRS03454	Soil	< 0.001	0.039	2.49	10.4	1.83	0.71	11.85	19.1
GRS03455	Soil	< 0.001	0.041	2.14	12.25	2.19	0.91	10.95	30.9
GRS03456	Soil	< 0.001	0.037	2.81	22.1	3.61	0.68	12.35	37.4
GRS03457	Soil	0.001	0.047	3.63	26.4	4.7	0.81	11.8	45.9
GRS03461	Soil	0.001	0.05	3.47	41.9	4.82	0.64	12.55	57.9
GRS03462	Soil	< 0.001	0.029	2.15	16.6	2.94	0.7	11.8	31.9
GRS03463	Soil	< 0.001	0.034	2.79	25.9	3.21	1.06	13.55	38.8
GRS03464	Soil	< 0.001	0.02	2.91	25.6	4.09	1.15	8.51	52
GRS03465	Soil	< 0.001	0.023	1.76	12.25	2.39	0.91	9	31.2
GRS03466	Soil	< 0.001	0.019	1.87	18.65	3.74	0.8	8.42	41.1
GRS03467	Soil	< 0.001	0.04	2.4	15.75	3.64	0.82	11.55	40.5
GRS03468	Soil	< 0.001	0.033	2.56	9.87	1.44	0.57	10.6	17.2
GRS03469	Soil	< 0.001	0.021	1.76	10.8	1.99	1	7.99	24.1
GRS03470	Soil	0.001	0.115	4.44	53.6	4.34	0.67	14.7	63.5
GRS03471	Soil	< 0.001	0.039	2.43	17.6	2.26	0.62	13.15	30.1
GRS03472	Soil	< 0.001	0.023	2.52	10	1.54	0.73	13.25	16.6
GRS03473	Soil	< 0.001	0.04	2.09	15.85	2.76	0.73	10.6	36.8
GRS03474	Soil	< 0.001	0.016	1.97	10.4	2.27	1.13	8.18	22.1
GRS03475	Soil	< 0.001	0.02	1.87	9.07	1.9	1.15	9.36	26
GRS03476	Soil	< 0.001	0.024	1.28	7.91	1.45	0.65	8.84	19.3
GRS03477	Soil	< 0.001	0.024	1.61	8.4	1.99	0.98	9.62	28.5
GRS03478	Soil	< 0.001	0.015	1.36	8.28	1.73	0.66	7.92	19
GRS03479	Soil	< 0.001	0.023	1.91	14.6	2.85	0.7	10.5	31
GRS03482	Soil	< 0.001	0.031	1.74	18	2.62	0.96	13.25	39.1
GRS03483	Soil	< 0.001	0.022	1.41	10.05	2.39	0.67	7.31	26.7
GRS03484	Soil	< 0.001	0.026	1.84	9.54	2.18	1.61	11.6	22.4
GRS03485	Soil	<0.001	0.022	0.92	7.48	1.5	0.64	10.05	17.7
GRS03486	Soil	<0.001	0.032	2.07	10.5	1.95	0.65	10.15	22.7
GRS03487	Soil	< 0.001	0.013	3.18	8.06	2.13	0.93	10.3	17.9
GRS03488	Soil	<0.001	0.039	1.66	8.32	1.43	0.55	8.21	14.1
GRS03489	Soil	< 0.001	0.051	1.65	21.7	2.11	0.91	13.75	54
GRS03490	Soil	0.002	0.024	2.32	9.46	1.8	0.95	11.8	22.7
GRS03491	Soil	< 0.001	0.03	2.51	10.65	1.83	0.73	10.7	29.3
GRS03493	Soil	<0.001	0.017	1.67	6.72	1.99	0.87	9.84	23
GRS03494	Soil	< 0.001	0.025	1.66	10.85	2.22	0.8	9.9	36.4
GRS03495	Soil	<0.001	0.013	1.6	6.26	2.07	1.06	9.38	23.2

SampleID	Туре	Au_ppm	Ag_ppm	As_ppm	Cu_ppm	Fe_ppm	Mo_ppm	Pb_ppm	Zn_ppm
GRS03496	Soil	<0.001	0.022	1.17	5.06	1.58	1.19	8.2	17.4
GRS03497	Soil	<0.001	0.016	1.41	6.17	1.55	0.77	7.46	19.6
GRS03498	Soil	<0.001	0.013	1.58	7.19	1.79	0.53	7.8	23.7
GRS03499	Soil	< 0.001	0.047	1.83	22.6	1.95	0.5	11.65	29.9
GRS03500	Soil	<0.001	0.024	2.01	9.93	1.87	0.72	10.9	23.5
GRS03501	Soil	<0.001	0.018	2	5.46	1.6	1.11	9.15	17.7
GRS03502	Soil	<0.001	0.022	1.9	9.38	1.48	0.73	9.04	23.7
GRS03503	Soil	<0.001	0.029	2.31	9.76	1.69	0.81	9.81	16.6