

Maiden diamond drill program completed at the Narraburra Rare Earth and Rare Metals Project

- Four holes for a total of 285.6m of PQ large diameter diamond core drilling completed, to obtain material for bench-scale metallurgical test work, mineralogical studies and confirmatory assays for holes drilled within previously identified mineralisation
- pXRF (portable Xray Diffraction assay) measurements taken on site indicate the presence of rare earth elements and rare metals in all drill core
- As well as mineralisation within the weathered surficial material pXRF readings indicate that rare metals mineralisation is likely present in underlying fresh rock, a horizon never previously tested by historical drilling.
- Work towards commencement of 4,000m aircore program to provide a Mineral Resource Estimate to JORC 2012 standards underway drilling to commence once site access is available

Godolphin Resources Limited (ASX: GRL) ("Godolphin" or the "Company") is pleased to advise it has completed four (4) diamond drill holes, for a total of 285.6m, at the Narraburra Rare Earth and Rare Metals Project, located 12km northeast of Temora in in central west NSW ("Narraburra" or "the Project"). Drill core is currently being processed at the Company's facility in Orange, before being cut and sent for geochemical assay.

The Narraburra area was first explored for Rare Earth Elements (**"REE"**) associated with the Devonian-aged Narraburra Granite in 1999. It was later identified as one of Australia's largest zirconium, REE and Rare Metal (**"RM"**) resources, which also contains significant amounts of lithium. Significantly, it is listed as a critical minerals project by the Critical Minerals Facilitation Office of the Australian Government's Department of Industry, Science, Energy and Resources and Australian Trade and Investment Commissionⁱ and highlights a significant "low-carbon metal" opportunity for Godolphin in a well-established mining region.

Several different measurements were taken in the field, including spot pXRF readings at 50cm intervals down the drill core. The pXRF machine can measure the presence of a limited range of rare earth element and rare metal pathfinder elements, along with other elements that may indicate the presence of other rare elements of economic importance that cannot be directly detected by the device. The results give an indication as to the location of the elements of interest within each drill hole. The decision to extend holes well below the previously identified mineralisation was predicated during drilling using the pXRF data.

Initial pXRF results from Narraburra indicate that rare metal mineralisation is likely present in the underlying fresh rock, which is a horizon not previously tested by historical drilling, as well as occurring in the weathered surficial material. The planned mineralogical work will determine if the rare metals in the fresh rock are in a form that can be economically extracted.

Managing Director Ms Jeneta Owens said: "The core drilling is a major step in Godolphin's commitment to the ongoing exploration and development of the Project. The pXRF results are highly encouraging and indicate that not only are the economic elements of interest in the weathered rock, as tested by previous explorers, but there is also potential within the fresh rock, specifically for rubidium, which is a rare and high-value metal.

Godolphin Resources

ASX Code: **GRL** ABN: 13 633 779 950 A: Unit 13, 11-19 William Street, Orange NSW 2800 P: +61 2 6318 8144 E: info@godolphinresources.com.au www.godolphinresources.com.au

¹https://www.austrade.gov.au/ArticleDocuments/5572/Critical Minerals Projects in Australia.pdf.aspx

Our focus has now shifted to the next phase of exploration, which will include additional test work to determine extraction rates for the rare earths and rate metals to evaluate economic viability.

The Company is currently cutting core and this will be shortly sent off for geochemical analysis. The results of this analysis will assist planned mineralogical and metallurgical test work. We look forward to reporting ongoing results and developments as we advance this very exciting Project."

Assay results are anticipated in six to eight weeks, following the commencement of the Company's planned 4,000m aircore drill program to upgrade Narraburra's previously identified mineralisation to Mineral Resource Estimate JORC 2012 standards.

Figure 1: Location of the four diamond drill holes at Narraburra.

Narraburra Diamond Drilling

Diamond drilling commenced on 19 July 2022 (refer GRL's ASX announcement: 21 July 2022) and was completed in early August 2022. A total of four diamond drill holes were drilled for 285.6m. Due to the prolonged wet weather conditions across NSW, the Project area has considerable areas of water-logged ground (see Figure 2). Drill sites for the diamond drill program were chosen for safety to be located close to well-formed tracks in areas of the driest ground, while provided an adequate spread of drill hole locations across the Project area.

Hole GNBDD001 was located within a broad area previously found to contain REE/RM mineralisation. To test the reliability of historical drilling intercepts, hole GNBDD002 was drilled approximately 5m from a historical drill hole by a previous explorer. Hole GNBDD003 was located just outside an area found previously to contain REE/RM mineralisation. Hole GNBDD004 was drilled in an area without any previous drilling.

All holes had similar down hole profiles, with thick weathered regolith sitting above fresh rock. Hole GNBDD001 intersected weathered rock down to 55.5m, and then fresh rock until the end of hole at 99.3m. Hole GNBDD002 intersected weathered rock down to 35.5m, followed by fresh rock until 60.3m the end of the hole. Hole GNBDD003 intersected weathered rock down to 51.4m, and fresh rock to the end of hole at 63.4m. Hole GNBDD004 again intersected weathered rock down to 48.5m, and fresh rock to the end of hole at 62.6m.

All drillholes had very good core recovery of all material through both the weathered and fresh rock. The weathered rocks were wrapped in plastic when taken from the drill splits to retain moisture for metallurgical test work and promote good sample retention for the transport to Orange for detailed logging and sampling.

Figure 2: Access conditions (above) at Narraburra and Diamond drill rig on hole GNBNDD001 (below).

Spot pXRF readings were taken every 50cm down all the drill holes in real-time at the drill rig, to ensure drillholes continued if pXRF readings provided encouragement of increasing readings for elements of interest. Due to the inherent nature of over-representation of <LOD (limit of detection) when taking spot pXRF readings on drill core, average values in the hole may potentially be diluted. Average values for indicator rare earth and rare metal elements across all holes are shown in Tables 1 and 2 below.

Zirconium (Zr) is an REE/RM indicator element that may possibly signify REE/RM mineralisation unable to be detected by the pXRF machine. Encouragingly, zirconium reported up to 1,886ppm in hole GNBDD001. Rubidium values reached a maximum of 514ppm in the fresh rock from GNBDD001, reinforcing that rare metal mineralisation may extend below the previously tested weathering profile into the fresh rock below. These are considered preliminary in-field measurements, and full geochemical assays will be required to confirm these results and interpretations.

Table 1: Rare Earth Intercepts (Summed Average), <LOD represented as half detection limit, across all four drillholes reported by pXRF for selected indicator elements. Note: the pXRF does not detect all elements of economic interest, only a select few, which is why indicator elements are used.

	From	То	Width	Average (ppm)		Inclu	ding	
Holeid	(m)	(m)	(m)	Pr+La+Ce+Nd	Pr (ppm)	Nd (ppm)	Ce (ppm)	La (ppm)
GNBDD001	26	74.5	48.5	253	20	78	95	60
GNBDD002	34	58.5	24.5	272	26	102	73.76	70.3
GNBDD003	33	61	28	340	21	104	135	80
GNBDD004	32.5	62	29.5	193	23	47	79	44

Table 2: Rare Metal Intercepts (Summed Average), <LOD represented as half detection limit, for all four drillholes reported by pXRF for select indicator elements. Note: the pXRF does not detect all elements of economic interest, for example Hafnium, Lithium and Gallium are not detectable by the pXRF device but have been detected in historic work at Narraburra.

	From	То	\A/;dth /ma)	Average (ppm)		Including	
Holeid	(m)	(m)	wiath (m)	Zr+Nb+Y	Zr (ppm)	Nb (ppm)	Y (ppm)
GNBDD001	0	99.3	99.3 (EOH)	535	374	37	124
GNBDD002	0	60.3	60.3 (EOH)	296	218	22	56
GNBDD003	0	63.4	63.4 (EOH)	261	214	10	37
GNBDD004	0	20	20	234	206	15	13

Figure 3: A: Photo of weathered drill core in splits B: Clay wrapped in plastic to retain moisture. C: End of hole fresh rock samples.

Assay results from the diamond drill core are expected to be received in October 2022. These results will be used to select intervals for a larger scale mineralogical program and bench scale metallurgical test work.

Godolphin will now commence work to complete its planned 4,000m air core drill program. The program will begin once safe site access is available (refer GRL's ASX announcement: 20 April 2022) to support the reclassification of the previously identified mineralisation to a Mineral Resource Estimate compliant to JORC 2012 standards.

<<ENDS>>

This market announcement has been authorised for release to the market by the Board of Godolphin Resources Limited.

For further information regarding Godolphin, please visit <u>https://godolphinresources.com.au/</u> or contact:

Jeneta Owens Managing Director +61 417 344 658 jowens@godolphinresources.com.au

Released through: Henry Jordan, Six Degrees Investor Relations, +61 431 271 538

About Godolphin Resources

Godolphin Resources (ASX: GRL) is an ASX listed resources company, with 100% controlled Australian-based projects in the Lachlan Fold Belt (**"LFB"**) NSW, a world-class gold-copper province and with the Dubbo Zirconia Project an emerging REE and RM province. Currently the Company's tenements cover 3,200km² of highly prospective ground focussed on the Lachlan Transverse Zone, one of the key structures which controlled the formation of copper and gold deposits within the LFB. Additional prospectivity attributes of GRL tenure include the McPhillamy's gold hosting Godolphin Fault and the Boda gold-copper hosting Molong Volcanic Belt.

Godolphin is exploring for structurally hosted, epithermal gold and base-metal deposits and large, goldcopper Cadia style porphyry deposits and is pleased to announce a re-focus of exploration efforts for unlocking the potential of its East Lachlan tenement holdings, including increasing the mineral resource of its advanced Lewis Ponds Project. Reinvigoration of the exploration efforts across the tenement package is the key to discovery and represents a transformational stage for the Company and its shareholders.

COMPLIANCE STATEMENT The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Ms Jeneta Owens, a Competent Person who is a Member of the Australian Institute of Geoscientists. Ms Owens is the Managing Director and full-time employee of Godolphin Resources Limited. Ms Owens has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Owens consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Information in this announcement is extracted from reports lodged as market announcements referred to above and available on the Company's website <u>www.qodolphinresources.com.au</u>.

The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 Diamond Drilling pXRF spot measurements were taken every 50cm of core for each hole – as this is a spot measurement on drill core and not a homogenised sample, results may be either positively or negatively skewed. As such these measurements are only used as an indication of the sample Magnetic Susceptibility measurements were taken every 50cm downhole Penetrometer measurements were taken at observed rock strength boundaries using a Penetrometer ST 315 instrument. Entire drill holes will be sampled on a 1m interval basis – in progress Each 1m sample will be cut in half, and that half cut in half again, to create ¼ core with one quarter to be sent for assay analysis and the other ¼ stored for future use in mineralogical and metallurgical test work. All intervals will be logged and recorded in GRL's standard templates and saved in the Company's database. Data includes: from and to measurements, colour, lithology, magnetic susceptibility, structures etc. Alteration and weathering will also logged – in progress
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details. 	 Diamond Drilling – Vertical diamond drilling (DD) with PQ core size into fresh rock then HQ core size using a triple tube for the remainder of the holes were used. Multi-shot surveys were taken at the end of the hole whilst pulling the rods.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	Diamond Drilling • Drill core recovery was determined by comparing the drilled length of each interval with the physical core in the tray. The drill depth and drill run length data is recorded on the core blocks by the drilling company and checked by GRL geologists. • Some small intervals of core loss in the upper weathered zone of the granite, however overall estimated recovery was high.

ASX A	NNOUNCEMENT	
Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Diamond Drilling The drill core will be logged by a GRL geologist. The log includes detailed datasets for: lithology, alteration, mineralisation, veins, structure, geotechnical logs, core recovery and magnetic susceptibility – in progress The data is logged by a qualified geologist and is suitable for use in any future geological modelling, resource estimation, mining and/or metallurgical studies
Sub-sampling	• For all sample types, the nature,	Diamond Drilling
techniques and sample preparation	quality and appropriateness of the sample preparation technique.	 Sample intervals were marked by the geologist using the lithology as guide. Sample lengths are not equal, but an average length of 1.0m will be obtained for this program. The PQ and HQ core will be split using a core saw and one quarter of each sample interval sent for assay analysis. QAQC was employed. A standard and blank sample was inserted into the sample stream at regular intervals, and also at specific intervals based on the geologist's discretion. Standards will be quantified industry standards. Sample sizes are appropriate for the nature of mineralisation.
Quality of assay data	• The nature, quality and	Diamond Drilling
and laboratory tests	 appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Sampling is in progress and will be sent to the Lab once completed.
Verification of sampling and	The verification of significant intersections by either	Lab's routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring.
assaying	 independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	GRL will also insert QAQC samples as mentioned above – in progress

	NNOUNCEMENT	
Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral 	 A handheld GPS was used to locate the drilling, with an averaged waypoint measurement: accuracy of less than 5m. A DGPS was used after drilling to pick up the final collar location: accuracy of less than 0.77m Coordinates used are WGS84 and transformed into Map Grid of Australia 1994 Zone 55
Data spacing and distribution	 Resource estimation. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Early-stage drilling program for Narraburra. Target is broad disseminated flat lying mineralisation above fresh igneous rock, as a result the drill density for this program is representative to indicate variability across the project area.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 Mineralisation is interpreted to in flat lying layers associated with weathering profiles of the underlying granite. Orientation of the drillhole was deemed suitable to target mineralisation of this style. No significant bias is likely as a result of the pattern of intersection angles.
Sample security	The measures taken to ensure sample security.	 For the program, care has been taken to have standard procedures for sample processing. They have been simple and industry standard to avoid sample bias. All samples were collected and accounted for by GRL employees/consultants during drilling. All logging is being completed by GRL personnel. All samples will be bagged into calico bags by GRL contractors under the instruction by GRL personnel. GRL personnel were present at the drill rig daily during the drilling and Diamond Drill core was collected from the site and taken to GRL's shed in Orange.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	N/A at this stage as sampling is in progress.

Criteria	JORC Code explanation	Commentary
Mineral	• Type, reference	Narraburra
tenement and land tenure	name/number, location and	The Narraburra rare earth and rare metals project is located 12km to the north east of the township of Temora in NSW and has an elevation approximately 315m above sea-level.
status	ownership including	• The exploration rights to the project are granted via a JV agreement with EX9, a private entity.
	agreements or material issues with third parties such as	• Earn-in terms – two tranche agreement allows Godolphin to progress to 51% ownership with \$1M exploration spend in the first two years of the JV agreement and 75% ownership through an additional \$2M in expenditure over the next two-year period
	joint ventures,	 See ASX announcement by Godolphin Resources (ASX: GRL) on 2nd March 2022: "Godolphin Secures Farm-in on Advanced Rare Earth Element Project"
	partnerships,	• The Narraburra rare earth prospect, lies on Exploration License number 8420 and is held 100% by EX9.
	native title interests.	The land is owned by private land holders northeast of the township of Temora
	historical sites, wilderness or national	• The security deposit paid by EX9 for EL8420 is \$10,000.
	park and environmental settings	
	 The security of the 	
	tenure held at the time	
	of reporting along with	
	any known	
	impediments to	
	optaining a license to	
Exploration	Acknowledgment and	See ASX appouncements by Godolphin Resources (ASX: GRI) on 2 nd March 2022 and Capitol Mining Limited (ASX: CMY) on 9 November 2011
done by other	appraisal of	
parties	exploration by other parties.	vide-spaced RAB and RC drilling.
Geology	• Deposit type,	Narraburra
	geological setting and style of	Geology
	mineralization.	EL8420 is situated over part of the Narraburra Complex, comprising three suites of alkaline granite at the triple junction of the Tumut, Girilambone-Goonumbla and Wagga Zones, central southern New South Wales. EL8420 straddles the northern edge of the junction between the Gilmore Fault and the Parkes Thrust, both structures known for their relationship to precious and base metal mineralisation.
		The Narraburra rare earth element (REE) and rare metal (RM) mineralisation is hosted within the saprolite cap of highly fractionated Devonian alkaline and peralkaline granites. Mineralisation occurs within these alkaline units as concentric bands, wrapping around the southern and western side of the largest sub-unit in the Narraburra complex, the Bodingerra Granite.
Drill hole Information	A summary of all information material	Total drilling at Narraburra EL8420 during this campaign was 285.6m metres, comprising of: • 4 diamond holes

ASX ANNOUNCEMENT Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

ASX	ANNO	DUNC	CEME	NT	
10			-		

Chiena	JURC Code explanation	ommentary								
	to the understanding	Drill hole information from this drilling is presented in the table below (results are pending)								
	of the exploration	Hole ID	Hole Type	Lease ID	MGA55 East	MGA55 North	MGA_RL	Dip	MGA Azi	Depth m
	tabulation of the	GNBDD001	DD	EL8420	551523.506	6202173.250	313.04	-90	360	99.3
	following information	GNBDD002	DD	EL8420	551949.953	6203135.182	309.07	-90	360	60.3
	for all Material drill	GNBDD003	סס	FI 8420	551213.079	6203230.508	291.99	-90	360	63.4
	holes:	CNBDD004	חח	EL 8420	550703 033	6202278 262	302.46	-90	360	62.6
		GNDDD004	00	LL0420	000190.900	0202210.202	502.40	-30	500	02.0
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	Results are pending								
Relationship	• These relationships	The holes were drilled at an average	e of -90° decl	ination						
between mineralization	are particularly	The mineralisation has been interpre-	eted as relati	vely flat lying.						
widths and	reporting of									
intercept	Exploration Results.									
lengths	• If the geometry of the									
	mineralisation with									
	respect to the drill									
	hole angle is known,									
	its nature should be									

Criteria	JORC Code explanation	Commentary
	reported.	
Diagrams	Appropriate maps and	Diagrams pertaining to this drilling program can be found in the body of the announcement.
	sections (with scales)	
	and tabulations of	
	intercepts should be	
	included for any	
	significant discovery	
	being reported These	
	should include, but	
	not be limited to a	
	plan view of drill hole	
	collar locations and	
	appropriate sectional	
	views.	
Balanced	Where	These are the first drill holes completed by GRL – results are pending
reporting	comprehensive	• pXRF values provided in the body of this report were collected on 50cm intervals from the drill core, both average and highest values are reported in the body of the announcement
	reporting of all	
	Exploration Results is	
	not practicable,	
	representative	
	reporting of both low	
	and high grades	
	and/or widths should	
	be practiced to avoid	
	misleading reporting	
	of Results.	
Other	Other exploration	See ASX announcements by Godolphin Resources (ASX: GRL) on 2 nd March 2022, and Capitol Mining Limited (ASX: CMY) on 9 November 2011
substantive	data, if meaningful	
exploration	and material, should	
data	be reported including	
	(but not limited to):	
	geological	
	observations;	
	geophysical survey	
	results; geochemical	
	survey results; bulk	
	samples – size and	
	method of treatment;	
	metallurgical test	
	results; bulk density,	
	groundwater,	

<u> </u>	SX ANNOUNCE	IMENT I I I I I I I I I I I I I I I I I I I
Criteria	JORC Code explanation	Commentary
	geotechnical and rock	
	characteristics;	
	potential deleterious	
	or contaminating	
	substances.	
Further work	• The nature and scale	• 4,000m aircore program: See ASX announcements by Godolphin Resources (ASX: GRL) on 20th April 2022.
	of planned further	
	work (eg tests for	
	lateral extensions or	
	depth extensions or	
	large-scale step-out	
	drilling).	

Appendix 2: Table of Drill sample pXRF results discussed in this ASX release. (Note: This is a complete list of samples, but not of all the elements. A complete list can be requested and supplied pending GRL Board approval).

GNBDD001 – Narraburra Prospect

Туре	Depth_m	Zr	Nb	Y	Pr	Rb	La	Се	Nd
DDU	0.5	_ppm	_ppm	_ppm	_ppm	_ppm	_ppm	_ppm	_ppm
	0.0	211	14	Z I		101		94	
	1	290	12	40		100	<lud< td=""><td>127</td><td><lud< td=""></lud<></td></lud<>	127	<lud< td=""></lud<>
DDH	1.5	203	13	101		103	00	117	15/
DDH	2	362	19	32	117	151	62	98	167
DDH	2.5	880	1/	120	<lod< td=""><td>188</td><td><lod< td=""><td>//</td><td><lod< td=""></lod<></td></lod<></td></lod<>	188	<lod< td=""><td>//</td><td><lod< td=""></lod<></td></lod<>	//	<lod< td=""></lod<>
DDH	3	452	31	74	<lod< td=""><td>155</td><td>54</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	155	54	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	3.5	436	21	30	<lod< td=""><td>97</td><td>66</td><td>68</td><td><lod< td=""></lod<></td></lod<>	97	66	68	<lod< td=""></lod<>
DDH	4	434	21	26	<lod< td=""><td>132</td><td><lod< td=""><td>67</td><td>188</td></lod<></td></lod<>	132	<lod< td=""><td>67</td><td>188</td></lod<>	67	188
DDH	4.5	379	22	39	<lod< td=""><td>99</td><td><lod< td=""><td>94</td><td>176</td></lod<></td></lod<>	99	<lod< td=""><td>94</td><td>176</td></lod<>	94	176
DDH	5	581	19	33	<lod< td=""><td>132</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	132	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	5.5	376	17	23	<lod< td=""><td>117</td><td><lod< td=""><td>75</td><td><lod< td=""></lod<></td></lod<></td></lod<>	117	<lod< td=""><td>75</td><td><lod< td=""></lod<></td></lod<>	75	<lod< td=""></lod<>
DDH	6	436	18	32	<lod< td=""><td>144</td><td>61</td><td><lod< td=""><td>170</td></lod<></td></lod<>	144	61	<lod< td=""><td>170</td></lod<>	170
DDH	6.5	273	23	33	<lod< td=""><td>142</td><td><lod< td=""><td><lod< td=""><td>182</td></lod<></td></lod<></td></lod<>	142	<lod< td=""><td><lod< td=""><td>182</td></lod<></td></lod<>	<lod< td=""><td>182</td></lod<>	182
DDH	7	422	32	46	139	141	82	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	7.5	263	29	36	156	104	<lod< td=""><td>152</td><td>214</td></lod<>	152	214
DDH	8	290	32	23	<lod< td=""><td>5</td><td><lod< td=""><td><lod< td=""><td>172</td></lod<></td></lod<></td></lod<>	5	<lod< td=""><td><lod< td=""><td>172</td></lod<></td></lod<>	<lod< td=""><td>172</td></lod<>	172
DDH	8.5	557	45	38	<lod< td=""><td>2</td><td><lod< td=""><td>73</td><td>183</td></lod<></td></lod<>	2	<lod< td=""><td>73</td><td>183</td></lod<>	73	183
DDH	9	458	35	29	<lod< td=""><td>4</td><td>50</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	4	50	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	9.5	553	44	43	<lod< td=""><td>4</td><td><lod< td=""><td>88</td><td><lod< td=""></lod<></td></lod<></td></lod<>	4	<lod< td=""><td>88</td><td><lod< td=""></lod<></td></lod<>	88	<lod< td=""></lod<>
DDH	10	490	59	35	<lod< td=""><td>2</td><td>47</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	2	47	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	10.5	418	36	36	<lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	6	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	11	593	58	42	<lod< td=""><td>2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	2	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	11.5	409	50	34	<lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	4	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	12	464	63	46	<lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	4	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	12.5	393	47	36	<lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	13	344	44	30	121	3	<lod< td=""><td>62</td><td>186</td></lod<>	62	186
DDH	13.5	446	53	37	<lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	14	359	44	35	<lod< td=""><td>3</td><td><lod< td=""><td>67</td><td><lod< td=""></lod<></td></lod<></td></lod<>	3	<lod< td=""><td>67</td><td><lod< td=""></lod<></td></lod<>	67	<lod< td=""></lod<>
DDH	14.5	431	49	43	<lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td>164</td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td><lod< td=""><td>164</td></lod<></td></lod<>	<lod< td=""><td>164</td></lod<>	164
DDH	15	351	35	38	<lod< td=""><td>1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	1	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	15.5	330	27	28	128	48	70	95	<lod< td=""></lod<>
DDH	16	311	33	33	<lod< td=""><td>5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	5	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	16.5	370	40	44	<lod< td=""><td>10</td><td>73</td><td>86</td><td><lod< td=""></lod<></td></lod<>	10	73	86	<lod< td=""></lod<>
DDH	17	331	44	35	<lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	12	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	17.5	513	54	49	162	7	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	18	588	90	57	<lod< td=""><td>2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	2	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	18.5	424	53	39	<lod< td=""><td>3</td><td>61</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	3	61	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	19	464	61	49	<lod< td=""><td>3</td><td>55</td><td>75</td><td><lod< td=""></lod<></td></lod<>	3	55	75	<lod< td=""></lod<>

Туре	Depth_m	Zr	Nb	Y	Pr	Rb	La	Се	Nd
חח	10 5	_ppm 	_ppm	_ppm		_ppm			
וושש	19.5	4J1 296	51	32 20		2	~LOD		
пла	20 20 5	181	61	30 //5		2		~LOD	
	20.5	404	52	4J 26		2			
חסס	21	495	56	53		2			
	21.J 22	JJ0 450	50	JJ 12		ו ס	~LOD		
חתת	22	200	04 52	4J 20		2	55		
	22.J 22	590	55	20					
חסס	23	51/	65	50		100 2			
	23.3	J14 404	0J 50	JZ 26	<lod< td=""><td>2</td><td>~LOD</td><td></td><td></td></lod<>	2	~LOD		
חעע	24	494	101	50		ן ר			
חתת	24.3	907 501	101	25		2		~LUU	
חסס	2J 25 5	571	30 40	30					
חעע	20.0	571	40 60	49	127		NLOD	NLUU 76	~LOD
חתת	20	000 121	00 51	40			57 70	64	
חעע	20.3	431	51	4J 70				04	
חעע	21	400	62	79			~LUU	95	
חעע	27.0	491	03	70				90	
	20	040 506	0U 64	13				80	
חעע	20.0	590	01	00				90	
חעע	29	013	09	00 64					
חעע	29.0	400	00 45	60	140		/U 05		
	30 20 F	01/ 520	40 65	09	140			99	
חעע	30.3 24	JJ9 567	60	0 I 70				<lud< td=""><td></td></lud<>	
חעע	31 24 5	507	64	10			109	134	100
חעע	31.J 20	01/ 527	01 50	0Z 00				110	
חעע	3Z 22 5	001 102	JZ 44	00 70					
חעע	32.J 22	42J	41 50	12			100	NLUU 542	
חעע	33 22 5	202	10	110			04 125	106	~LOD
חעע	33.J 24	280 260	4Z	101			120	120	230
חעע	34 24 5	209	31 46	90		<lod< td=""><td>79</td><td>0/</td><td></td></lod<>	79	0/	
חעע	34.J	303	40	110					
חעע	30 25 5	24/	40 20	133		NLOD			
חעע	30.0 26	209	30 26	124		2		<lud< td=""><td></td></lud<>	
חעע	30 26 5	209	30 40	101		ა ე		10	
חעע	30.J	210	49	90		2	91 70	400	<lud< td=""></lud<>
חעע	31 27 5	313	31	119	<lod< td=""><td>ა ი</td><td>70</td><td></td><td></td></lod<>	ა ი	70		
חעע	37.J 20	190	ა4 22	140		<u>э</u>		<lud< td=""><td></td></lud<>	
חעע	30 20 5	230	აა ეუ	107		4		1/3	
חעע	30.J 20	213	Z1 AA	111		7	~LUU 75	0J <1 OD	
	39 20 5	170	44 20	110		1			
ייתם	39.0	170	JZ 42	30		3		140	190
אטט	40	1/0	4J 24	114		4		110 79	
אעט	40.5	100	24	129		0	/ I 59	10	
DDH	41	209	30	135	<lud< td=""><td>4</td><td>JQ</td><td>100</td><td><lod< td=""></lod<></td></lud<>	4	J Q	100	<lod< td=""></lod<>

Туре	Depth_m	Zr	Nb	Y	Pr	Rb	La	Ce	Nd
DDH	41.5	_ppm 691	_ppm 83	_ppm 173	_ppm <lod< td=""><td>_ppm 5</td><td>_ppm 92</td><td>_ppm <lod< td=""><td>_ppm 219</td></lod<></td></lod<>	_ppm 5	_ppm 92	_ppm <lod< td=""><td>_ppm 219</td></lod<>	_ppm 219
DDH	42	363	34	185	<lod< td=""><td>5</td><td>81</td><td><lod< td=""><td>233</td></lod<></td></lod<>	5	81	<lod< td=""><td>233</td></lod<>	233
DDH	42.5	155	18	75	<lod< td=""><td>4</td><td><lod< td=""><td>65</td><td><lod< td=""></lod<></td></lod<></td></lod<>	4	<lod< td=""><td>65</td><td><lod< td=""></lod<></td></lod<>	65	<lod< td=""></lod<>
DDH	43	355	44	153	<lod< td=""><td>11</td><td>110</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	11	110	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	43.5	219	38	152	<lod< td=""><td>7</td><td>66</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	7	66	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	44	123	29	111	<lod< td=""><td>8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	8	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	44.5	124	20	123	<lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	23	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	45	482	46	83	<lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	7	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	45.5	170	19	145	<lod< td=""><td>18</td><td><lod< td=""><td>115</td><td><lod< td=""></lod<></td></lod<></td></lod<>	18	<lod< td=""><td>115</td><td><lod< td=""></lod<></td></lod<>	115	<lod< td=""></lod<>
DDH	46	175	30	102	<lod< td=""><td>13</td><td><lod< td=""><td>76</td><td><lod< td=""></lod<></td></lod<></td></lod<>	13	<lod< td=""><td>76</td><td><lod< td=""></lod<></td></lod<>	76	<lod< td=""></lod<>
DDH	46.5	326	40	182	<lod< td=""><td>79</td><td>58</td><td>118</td><td><lod< td=""></lod<></td></lod<>	79	58	118	<lod< td=""></lod<>
DDH	47	400	19	204	<lod< td=""><td>19</td><td>146</td><td>225</td><td>290</td></lod<>	19	146	225	290
DDH	47.5	129	35	171	<lod< td=""><td>66</td><td>84</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	66	84	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	48	625	35	147	<lod< td=""><td>75</td><td><lod< td=""><td>858</td><td><lod< td=""></lod<></td></lod<></td></lod<>	75	<lod< td=""><td>858</td><td><lod< td=""></lod<></td></lod<>	858	<lod< td=""></lod<>
DDH	48.5	183	32	146	139	240	<lod< td=""><td>331</td><td><lod< td=""></lod<></td></lod<>	331	<lod< td=""></lod<>
DDH	49	203	28	160	<lod< td=""><td>242</td><td><lod< td=""><td>149</td><td><lod< td=""></lod<></td></lod<></td></lod<>	242	<lod< td=""><td>149</td><td><lod< td=""></lod<></td></lod<>	149	<lod< td=""></lod<>
DDH	49.5	442	28	140	<lod< td=""><td>292</td><td>73</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	292	73	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	50	1498	28	153	<lod< td=""><td>327</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	327	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	50.5	236	21	174	109	293	65	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	51	727	29	175	<lod< td=""><td>265</td><td>82</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	265	82	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	51.5	178	14	277	<lod< td=""><td>351</td><td><lod< td=""><td>76</td><td>140</td></lod<></td></lod<>	351	<lod< td=""><td>76</td><td>140</td></lod<>	76	140
DDH	52	177	16	316	<lod< td=""><td>356</td><td>77</td><td>332</td><td>270</td></lod<>	356	77	332	270
DDH	52.5	196	44	248	<lod< td=""><td>263</td><td>92</td><td>83</td><td><lod< td=""></lod<></td></lod<>	263	92	83	<lod< td=""></lod<>
DDH	53	143	29	220	<lod< td=""><td>288</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	288	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	53.5	267	36	350	<lod< td=""><td>273</td><td>84</td><td><lod< td=""><td>210</td></lod<></td></lod<>	273	84	<lod< td=""><td>210</td></lod<>	210
DDH	54	465	28	283	<lod< td=""><td>274</td><td>110</td><td>81</td><td>151</td></lod<>	274	110	81	151
DDH	54.5	138	15	322	123	308	236	109	239
DDH	55	330	31	222	109	311	60	95	166
DDH	55.5	789	23	160	<lod< td=""><td>247</td><td>55</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	247	55	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	56	199	34	205	<lod< td=""><td>326</td><td>57</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	326	57	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	56.5	124	27	242	<lod< td=""><td>323</td><td><lod< td=""><td><lod< td=""><td>204</td></lod<></td></lod<></td></lod<>	323	<lod< td=""><td><lod< td=""><td>204</td></lod<></td></lod<>	<lod< td=""><td>204</td></lod<>	204
DDH	57	319	44	239	<lod< td=""><td>272</td><td>72</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	272	72	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	57.5	189	32	609	160	358	532	<lod< td=""><td>705</td></lod<>	705
DDH	58	426	23	235	<lod< td=""><td>307</td><td>140</td><td><lod< td=""><td>264</td></lod<></td></lod<>	307	140	<lod< td=""><td>264</td></lod<>	264
	58.5	187	30	3/8		310			
	59 50 5	4/4	33 66	102		304	<lud< td=""><td>01 400</td><td>211</td></lud<>	01 400	211
	59.5 CO	53Z	00	1/5		421	8Z	108	234
	0U 60 5	140	11	138		292		114	1/3
	61.00	100	20 27	102		200		30 20	1/3
חחח	61 5	546	31 22	05		301	~LOD		
חסס	62	102	23	90		300	71		166
חחם	62 5	150	∠ I 22	157		376			178
חחם	63	30/	25	188		381			
חטט	03	304	33	100	NLOD	301			NLOD

Туре	Depth_m	Zr	Nb	Y	Pr	Rb	La	Се	Nd
пон	63 5	_ppm 	_ppm 32	_ppm 120	_ppm	_ppm 354	_ppm 51	_ppm 50	_ppm
	64	761	3 <u>2</u> 21	152		308	<i>1</i> 0	61	172
пон	64 5	332	53	244		300	128	120	
	65	646	42	259		410		73	
пон	65 5	190	30	166		371	76	106	
	66	130	30	186		377		92	
пп	66 5	560	28	128		<i>1</i> 27	~LOD		177
	67	203	20	226		307			
пп	67.5	1/13	30	103		3//		85	
	68	611	36	251		J96	90	110	23/
пон	68 5	107	46	210		305	68		
	69	591	28	146		347	<i od<="" td=""><td></td><td></td></i>		
	69 5	218	41	171		354	117	159	188
	70	131	19	187		317	<1.0D		130
DDH	70.5	143	26	175		335		117	
DDH	71	112	23	701	173	260	333	599	282
DDH	71.5	167	19	321		329	150	185	
DDH	72	118	15	106	178	341	74		
DDH	72.5	314	23	173		354	71	121	
DDH	73	232	37	229		340	53	131	
DDH	73.5	614	23	370	<lod< td=""><td>316</td><td><lod< td=""><td>336</td><td>309</td></lod<></td></lod<>	316	<lod< td=""><td>336</td><td>309</td></lod<>	336	309
DDH	74	167	32	415	<lod< td=""><td>274</td><td>77</td><td>291</td><td><lod< td=""></lod<></td></lod<>	274	77	291	<lod< td=""></lod<>
DDH	74.5	756	29	138	<lod< td=""><td>514</td><td>112</td><td>224</td><td><lod< td=""></lod<></td></lod<>	514	112	224	<lod< td=""></lod<>
DDH	75	129	38	111	<lod< td=""><td>265</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	265	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	75.5	468	162	468	145	343	93	184	<lod< td=""></lod<>
DDH	76	855	38	163	<lod< td=""><td>316</td><td>63</td><td>96</td><td><lod< td=""></lod<></td></lod<>	316	63	96	<lod< td=""></lod<>
DDH	76.5	247	21	109	<lod< td=""><td>329</td><td>69</td><td>109</td><td><lod< td=""></lod<></td></lod<>	329	69	109	<lod< td=""></lod<>
DDH	77	301	16	72	<lod< td=""><td>331</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	331	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	77.5	297	23	93	<lod< td=""><td>338</td><td><lod< td=""><td><lod< td=""><td>182</td></lod<></td></lod<></td></lod<>	338	<lod< td=""><td><lod< td=""><td>182</td></lod<></td></lod<>	<lod< td=""><td>182</td></lod<>	182
DDH	78	450	56	178	<lod< td=""><td>383</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	383	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	78.5	325	63	112	<lod< td=""><td>255</td><td><lod< td=""><td>81</td><td><lod< td=""></lod<></td></lod<></td></lod<>	255	<lod< td=""><td>81</td><td><lod< td=""></lod<></td></lod<>	81	<lod< td=""></lod<>
DDH	79	113	27	89	<lod< td=""><td>383</td><td><lod< td=""><td><lod< td=""><td>224</td></lod<></td></lod<></td></lod<>	383	<lod< td=""><td><lod< td=""><td>224</td></lod<></td></lod<>	<lod< td=""><td>224</td></lod<>	224
DDH	79.5	140	35	120	<lod< td=""><td>314</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	314	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	80	176	80	242	<lod< td=""><td>275</td><td>169</td><td>265</td><td><lod< td=""></lod<></td></lod<>	275	169	265	<lod< td=""></lod<>
DDH	80.5	220	28	92	<lod< td=""><td>327</td><td>65</td><td>123</td><td><lod< td=""></lod<></td></lod<>	327	65	123	<lod< td=""></lod<>
DDH	81	152	44	131	149	326	<lod< td=""><td>83</td><td><lod< td=""></lod<></td></lod<>	83	<lod< td=""></lod<>
DDH	81.5	102	20	94	<lod< td=""><td>357</td><td>81</td><td>86</td><td><lod< td=""></lod<></td></lod<>	357	81	86	<lod< td=""></lod<>
DDH	82	215	43	136	<lod< td=""><td>477</td><td><lod< td=""><td><lod< td=""><td>184</td></lod<></td></lod<></td></lod<>	477	<lod< td=""><td><lod< td=""><td>184</td></lod<></td></lod<>	<lod< td=""><td>184</td></lod<>	184
DDH	82.5	266	29	99	<lod< td=""><td>316</td><td>60</td><td>101</td><td><lod< td=""></lod<></td></lod<>	316	60	101	<lod< td=""></lod<>
DDH	83	139	47	166	<lod< td=""><td>336</td><td><lod< td=""><td><lod< td=""><td>187</td></lod<></td></lod<></td></lod<>	336	<lod< td=""><td><lod< td=""><td>187</td></lod<></td></lod<>	<lod< td=""><td>187</td></lod<>	187
DDH	83.5	742	32	102	<lod< td=""><td>333</td><td><lod< td=""><td><lod< td=""><td>190</td></lod<></td></lod<></td></lod<>	333	<lod< td=""><td><lod< td=""><td>190</td></lod<></td></lod<>	<lod< td=""><td>190</td></lod<>	190
DDH	84	356	30	120	<lod< td=""><td>342</td><td>86</td><td>142</td><td><lod< td=""></lod<></td></lod<>	342	86	142	<lod< td=""></lod<>
DDH	84.5	531	22	120	<lod< td=""><td>399</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	399	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	85	208	40	104	<lod< td=""><td>308</td><td><lod< td=""><td><lod< td=""><td>167</td></lod<></td></lod<></td></lod<>	308	<lod< td=""><td><lod< td=""><td>167</td></lod<></td></lod<>	<lod< td=""><td>167</td></lod<>	167

Туре	Depth_m	Zr	Nb	Y	Pr	Rb	La	Се	Nd
ווחח	0 <i>E E</i>	_ppm	_ppm	_ppm	_ppm	_ppm	_ppm	_ppm	_ppm
DDH	80.0	108	22	83	<lod< td=""><td>399</td><td><lod< td=""><td></td><td>221</td></lod<></td></lod<>	399	<lod< td=""><td></td><td>221</td></lod<>		221
DDH	86	222	1/	103	129	308	119	225	316
DDH	86.5	747	27	88	<lod< th=""><th>338</th><th>70</th><th>144</th><th><lod< th=""></lod<></th></lod<>	338	70	144	<lod< th=""></lod<>
DDH	87	1042	12	88	<lod< th=""><th>297</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	297	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	87.5	212	31	98	<lod< td=""><td>358</td><td><lod< td=""><td>92</td><td><lod< td=""></lod<></td></lod<></td></lod<>	358	<lod< td=""><td>92</td><td><lod< td=""></lod<></td></lod<>	92	<lod< td=""></lod<>
DDH	88	91	17	73	<lod< td=""><td>357</td><td><lod< td=""><td>87</td><td><lod< td=""></lod<></td></lod<></td></lod<>	357	<lod< td=""><td>87</td><td><lod< td=""></lod<></td></lod<>	87	<lod< td=""></lod<>
DDH	88.5	257	30	78	<lod< td=""><td>378</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	378	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	89	131	23	65	<lod< td=""><td>341</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	341	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	89.5	114	20	41	<lod< td=""><td>424</td><td><lod< td=""><td><lod< td=""><td>190</td></lod<></td></lod<></td></lod<>	424	<lod< td=""><td><lod< td=""><td>190</td></lod<></td></lod<>	<lod< td=""><td>190</td></lod<>	190
DDH	90	185	83	141	<lod< td=""><td>390</td><td><lod< td=""><td>103</td><td><lod< td=""></lod<></td></lod<></td></lod<>	390	<lod< td=""><td>103</td><td><lod< td=""></lod<></td></lod<>	103	<lod< td=""></lod<>
DDH	90.5	522	40	119	148	313	103	123	199
DDH	91	145	33	95	147	338	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	91.5	237	25	63	<lod< td=""><td>306</td><td>76</td><td>112</td><td><lod< td=""></lod<></td></lod<>	306	76	112	<lod< td=""></lod<>
DDH	92	216	22	90	<lod< td=""><td>283</td><td>68</td><td>114</td><td><lod< td=""></lod<></td></lod<>	283	68	114	<lod< td=""></lod<>
DDH	92.5	234	34	89	<lod< td=""><td>413</td><td><lod< td=""><td>67</td><td><lod< td=""></lod<></td></lod<></td></lod<>	413	<lod< td=""><td>67</td><td><lod< td=""></lod<></td></lod<>	67	<lod< td=""></lod<>
DDH	93	426	8	509	<lod< td=""><td>389</td><td>74</td><td>93</td><td><lod< td=""></lod<></td></lod<>	389	74	93	<lod< td=""></lod<>
DDH	93.5	317	19	66	<lod< td=""><td>442</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	442	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	94	132	17	62	<lod< td=""><td>389</td><td>66</td><td>92</td><td><lod< td=""></lod<></td></lod<>	389	66	92	<lod< td=""></lod<>
DDH	94.5	409	36	74	<lod< td=""><td>388</td><td><lod< td=""><td>91</td><td>173</td></lod<></td></lod<>	388	<lod< td=""><td>91</td><td>173</td></lod<>	91	173
DDH	95	134	29	47	<lod< td=""><td>375</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	375	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	95.5	1886	31	126	<lod< td=""><td>436</td><td><lod< td=""><td>92</td><td>198</td></lod<></td></lod<>	436	<lod< td=""><td>92</td><td>198</td></lod<>	92	198
DDH	96	371	20	80	<lod< td=""><td>361</td><td>86</td><td>100</td><td><lod< td=""></lod<></td></lod<>	361	86	100	<lod< td=""></lod<>
DDH	96.5	78	23	41	<lod< td=""><td>275</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	275	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DDH	97	375	24	68	<lod< td=""><td>276</td><td>58</td><td>105</td><td><lod< td=""></lod<></td></lod<>	276	58	105	<lod< td=""></lod<>
DDH	97.5	213	38	93	<lod< td=""><td>383</td><td>100</td><td>160</td><td><lod< td=""></lod<></td></lod<>	383	100	160	<lod< td=""></lod<>
DDH	98	291	45	177	<lod< td=""><td>356</td><td><lod< td=""><td>112</td><td>184</td></lod<></td></lod<>	356	<lod< td=""><td>112</td><td>184</td></lod<>	112	184
DDH	98.5	134	33	67	<lod< td=""><td>272</td><td>85</td><td>115</td><td>184</td></lod<>	272	85	115	184
DDH	99	455	28	53	<lod< td=""><td>394</td><td><lod< td=""><td>97</td><td><lod< td=""></lod<></td></lod<></td></lod<>	394	<lod< td=""><td>97</td><td><lod< td=""></lod<></td></lod<>	97	<lod< td=""></lod<>
DDH	99.3	118	34	144	<lod< th=""><th>388</th><th>67</th><th>74</th><th><lod< th=""></lod<></th></lod<>	388	67	74	<lod< th=""></lod<>

GNBDD002 – Narraburra Prospect

Туре	Depth_m	Zr	Nb_ppm	Y	Pr	Rb	La	Се	Nd_ppm
DDU	4 5	_ppm	40	_ppm	_ppm	_ppm	_ppm	_ppm	
DDH	1.5	3/5	12	1/	<lod< th=""><th>113</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	113	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	2	390	11	24	<lod< th=""><th>136</th><th>/3</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	136	/3	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	2.5	407	14	33	<lod< th=""><th>145</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	145	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	3	356	20	42	<lod< th=""><th>118</th><th><lod< th=""><th><lod< th=""><th>1/5</th></lod<></th></lod<></th></lod<>	118	<lod< th=""><th><lod< th=""><th>1/5</th></lod<></th></lod<>	<lod< th=""><th>1/5</th></lod<>	1/5
DDH	3.5	427	14	31	<lod< th=""><th>135</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	135	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	4	387	24	55	<lod< th=""><th>158</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	158	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	4.5	306	27	49	<lod< th=""><th>194</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	194	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	5	542	35	65	<lod< th=""><th>177</th><th><lod< th=""><th>60</th><th><lod< th=""></lod<></th></lod<></th></lod<>	177	<lod< th=""><th>60</th><th><lod< th=""></lod<></th></lod<>	60	<lod< th=""></lod<>
DDH	5.5	461	25	53	<lod< th=""><th>238</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	238	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	6	254	17	45	<lod< th=""><th>127</th><th><lod< th=""><th><lod< th=""><th>128</th></lod<></th></lod<></th></lod<>	127	<lod< th=""><th><lod< th=""><th>128</th></lod<></th></lod<>	<lod< th=""><th>128</th></lod<>	128
DDH	6.5	456	24	61	<lod< th=""><th>165</th><th>46</th><th>66</th><th>131</th></lod<>	165	46	66	131
DDH	7	302	19	46	<lod< th=""><th>147</th><th>58</th><th>125</th><th><lod< th=""></lod<></th></lod<>	147	58	125	<lod< th=""></lod<>
DDH	7.5	401	25	45	<lod< th=""><th>151</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	151	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	8	380	31	61	<lod< th=""><th>129</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	129	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	8.5	180	12	17	<lod< th=""><th>45</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	45	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	9	490	53	51	<lod< th=""><th>33</th><th>54</th><th>72</th><th>156</th></lod<>	33	54	72	156
DDH	9.5	363	51	33	<lod< th=""><th>10</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	10	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	10	236	32	48	<lod< th=""><th>7</th><th><lod< th=""><th>80</th><th>147</th></lod<></th></lod<>	7	<lod< th=""><th>80</th><th>147</th></lod<>	80	147
DDH	10.5	312	38	31	<lod< th=""><th>9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	9	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	11	346	50	33	<lod< th=""><th>7</th><th>57</th><th>54</th><th><lod< th=""></lod<></th></lod<>	7	57	54	<lod< th=""></lod<>
DDH	11.5	339	46	34	<lod< th=""><th>5</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	5	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	12	231	23	22	<lod< th=""><th>7</th><th>51</th><th>75</th><th><lod< th=""></lod<></th></lod<>	7	51	75	<lod< th=""></lod<>
DDH	12.5	409	37	34	<lod< th=""><th>4</th><th>62</th><th>128</th><th><lod< th=""></lod<></th></lod<>	4	62	128	<lod< th=""></lod<>
DDH	13	340	35	21	<lod< th=""><th>3</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	3	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	13.5	249	43	23	<lod< th=""><th>2</th><th>50</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	2	50	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	14	220	57	30	<lod< th=""><th>4</th><th>52</th><th>67</th><th><lod< th=""></lod<></th></lod<>	4	52	67	<lod< th=""></lod<>
DDH	14.5	382	48	24	<lod< th=""><th>3</th><th><lod< th=""><th><lod< th=""><th>141</th></lod<></th></lod<></th></lod<>	3	<lod< th=""><th><lod< th=""><th>141</th></lod<></th></lod<>	<lod< th=""><th>141</th></lod<>	141
DDH	15	670	46	42	<lod< th=""><th>3</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	3	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	15.5	354	40	27	<lod< th=""><th>2</th><th>46</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	2	46	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	16	316	44	30	<lod< th=""><th>4</th><th>57</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	4	57	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	16.5	233	22	21	85	<lod< th=""><th><lod< th=""><th>49</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>49</th><th><lod< th=""></lod<></th></lod<>	49	<lod< th=""></lod<>
DDH	17	217	31	22	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	17.5	276	27	20	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	18	318	35	27	<lod< th=""><th>3</th><th>47</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	3	47	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	18.5	247	28	23	<lod< th=""><th>4</th><th>57</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	4	57	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	19	165	20	18	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	19.5	321	34	29	<lod< th=""><th>2</th><th><lod< th=""><th>77</th><th><lod< th=""></lod<></th></lod<></th></lod<>	2	<lod< th=""><th>77</th><th><lod< th=""></lod<></th></lod<>	77	<lod< th=""></lod<>
DDH	20	252	22	30	<lod< th=""><th>3</th><th><lod< th=""><th>65</th><th>171</th></lod<></th></lod<>	3	<lod< th=""><th>65</th><th>171</th></lod<>	65	171
DDH	20.5	221	25	24	<lod< th=""><th>2</th><th>47</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	2	47	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	21	268	36	29	<lod< th=""><th>1</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	1	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	21.5	300	26	31	<lod< th=""><th><lod< th=""><th>48</th><th>65</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>48</th><th>65</th><th><lod< th=""></lod<></th></lod<>	48	65	<lod< th=""></lod<>
DDH	22	172	24	30	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>

Туре	Depth_m	Zr	Nb_ppm	Y	Pr	Rb	La	Се	Nd_ppm
DDH	22.5	_ppm 120	26	_ppm 21	_ppm <lod< th=""><th>_ppm 2</th><th>_ppm <lod< th=""><th>_ppm <lod< th=""><th><l od<="" th=""></l></th></lod<></th></lod<></th></lod<>	_ppm 2	_ppm <lod< th=""><th>_ppm <lod< th=""><th><l od<="" th=""></l></th></lod<></th></lod<>	_ppm <lod< th=""><th><l od<="" th=""></l></th></lod<>	<l od<="" th=""></l>
DDH	23	183	20	26	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	23.5	240	24	36	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	24	111	17	20	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	24.5	146	19	22	<lod< th=""><th>10</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	10	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	25	193	22	26	119	3	<lod< th=""><th>113</th><th><lod< th=""></lod<></th></lod<>	113	<lod< th=""></lod<>
DDH	25.5	182	16	28	115	5	<lod< th=""><th>109</th><th><lod< th=""></lod<></th></lod<>	109	<lod< th=""></lod<>
DDH	26	131	23	25	<lod< th=""><th>9</th><th><lod< th=""><th>75</th><th><lod< th=""></lod<></th></lod<></th></lod<>	9	<lod< th=""><th>75</th><th><lod< th=""></lod<></th></lod<>	75	<lod< th=""></lod<>
DDH	26.5	103	14	23	118	5	64	87	<lod< th=""></lod<>
DDH	27	304	32	38	132	4	53	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	27.5	185	13	25	<lod< th=""><th>4</th><th><lod< th=""><th>90</th><th><lod< th=""></lod<></th></lod<></th></lod<>	4	<lod< th=""><th>90</th><th><lod< th=""></lod<></th></lod<>	90	<lod< th=""></lod<>
DDH	28	125	25	35	<lod< th=""><th>77</th><th><lod< th=""><th><lod< th=""><th>172</th></lod<></th></lod<></th></lod<>	77	<lod< th=""><th><lod< th=""><th>172</th></lod<></th></lod<>	<lod< th=""><th>172</th></lod<>	172
DDH	28.5	133	13	40	<lod< th=""><th>21</th><th>87</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	21	87	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	29	196	24	38	<lod< th=""><th>68</th><th>69</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	68	69	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	29.5	159	19	31	136	17	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	30	206	23	37	<lod< th=""><th>52</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	52	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	30.5	136	16	33	<lod< th=""><th>17</th><th><lod< th=""><th>69</th><th><lod< th=""></lod<></th></lod<></th></lod<>	17	<lod< th=""><th>69</th><th><lod< th=""></lod<></th></lod<>	69	<lod< th=""></lod<>
DDH	31	186	20	38	<lod< th=""><th>29</th><th><lod< th=""><th>78</th><th>166</th></lod<></th></lod<>	29	<lod< th=""><th>78</th><th>166</th></lod<>	78	166
DDH	31.5	112	12	49	<lod< th=""><th>20</th><th>66</th><th>121</th><th><lod< th=""></lod<></th></lod<>	20	66	121	<lod< th=""></lod<>
DDH	32	194	17	36	<lod< th=""><th>20</th><th>50</th><th>92</th><th><lod< th=""></lod<></th></lod<>	20	50	92	<lod< th=""></lod<>
DDH	32.5	157	11	34	139	20	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	33	128	19	34	<lod< th=""><th>25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	25	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	33.5	218	25	75	<lod< th=""><th>12</th><th>65</th><th>85</th><th><lod< th=""></lod<></th></lod<>	12	65	85	<lod< th=""></lod<>
DDH	34	128	14	39	162	34	<lod< th=""><th>185</th><th>158</th></lod<>	185	158
DDH	34.5	102	15	33	<lod< th=""><th>85</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	85	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	35	297	27	69	123	110	<lod< th=""><th>320</th><th>162</th></lod<>	320	162
DDH	35.5	114	21	38	<lod< th=""><th>161</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	161	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	36	189	21	48	<lod< th=""><th>135</th><th><lod< th=""><th>68</th><th><lod< th=""></lod<></th></lod<></th></lod<>	135	<lod< th=""><th>68</th><th><lod< th=""></lod<></th></lod<>	68	<lod< th=""></lod<>
DDH	36.5	302	28	82	<lod< th=""><th>207</th><th><lod< th=""><th>66</th><th><lod< th=""></lod<></th></lod<></th></lod<>	207	<lod< th=""><th>66</th><th><lod< th=""></lod<></th></lod<>	66	<lod< th=""></lod<>
DDH	37	109	14	74	<lod< th=""><th>196</th><th>97</th><th>73</th><th><lod< th=""></lod<></th></lod<>	196	97	73	<lod< th=""></lod<>
DDH	37.5	194	19	59	<lod< th=""><th>206</th><th><lod< th=""><th>63</th><th><lod< th=""></lod<></th></lod<></th></lod<>	206	<lod< th=""><th>63</th><th><lod< th=""></lod<></th></lod<>	63	<lod< th=""></lod<>
DDH	38	99	15	144	156	1/0	196	/4	207
DDH	38.5	1/8	28	42	<lod< th=""><th>200</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	200	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	39 20 F	1//	18	163	<lod< th=""><th>189</th><th>235</th><th><lod< th=""><th>246</th></lod<></th></lod<>	189	235	<lod< th=""><th>246</th></lod<>	246
DDH	39.5	139	14	123	188	197	334	123	412
	40	141	22	120		224	100	130	
	40.5	100	0	0/		207	120		
	41	04	10	10	<lud< th=""><th>204</th><th>13</th><th></th><th><lud 207</lud </th></lud<>	204	13		<lud 207</lud
	41.5 40	94	0	90	100	204	141	90	307
	42	107	9 10	99 140		15/	150	00	202
	42.0	107	15	00		206	90	120	207
חטט	43	82	10	30 78	167	101	90 11/	77	
חסס	40.0	11/	8	Q/		10/	100	7/	277
חטט	44	114	U	34		194	109	/4	211

Туре	Depth_m	Zr	Nb_ppm	Y	Pr	Rb	La	Се	Nd_ppm
DDU	44.5	_ppm	0	_ppm	_ppm	_ppm	_ppm	_ppm	1.05
DDH	44.5	82	9	114	<lod< th=""><th>215</th><th>135</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	215	135	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	45	116	9	98	<lod< th=""><th>202</th><th>75 00</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	202	75 00	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	45.5	146	14	91	<lod< th=""><th>169</th><th>66</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	169	66	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	46	269	25	124	<lod< th=""><th>210</th><th>102</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	210	102	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	46.5	190	24	55	<lod< th=""><th>270</th><th><lod< th=""><th>105</th><th><lod< th=""></lod<></th></lod<></th></lod<>	270	<lod< th=""><th>105</th><th><lod< th=""></lod<></th></lod<>	105	<lod< th=""></lod<>
DDH	47	109	8	50	<lod< th=""><th>264</th><th>83</th><th>120</th><th>223</th></lod<>	264	83	120	223
DDH	47.5	131	13	65	<lod< th=""><th>192</th><th><lod< th=""><th><lod< th=""><th>178</th></lod<></th></lod<></th></lod<>	192	<lod< th=""><th><lod< th=""><th>178</th></lod<></th></lod<>	<lod< th=""><th>178</th></lod<>	178
DDH	48	137	15	63	<lod< th=""><th>210</th><th>67</th><th>84</th><th>204</th></lod<>	210	67	84	204
DDH	48.5	121	46	94	<lod< th=""><th>198</th><th><lod< th=""><th>191</th><th><lod< th=""></lod<></th></lod<></th></lod<>	198	<lod< th=""><th>191</th><th><lod< th=""></lod<></th></lod<>	191	<lod< th=""></lod<>
DDH	49	217	12	109	<lod< th=""><th>193</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	193	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	49.5	124	13	82	<lod< th=""><th>198</th><th>68</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	198	68	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	50	126	6	46	<lod< th=""><th>217</th><th>107</th><th>113</th><th><lod< th=""></lod<></th></lod<>	217	107	113	<lod< th=""></lod<>
DDH	50.5	190	33	113	<lod< th=""><th>185</th><th><lod< th=""><th>190</th><th><lod< th=""></lod<></th></lod<></th></lod<>	185	<lod< th=""><th>190</th><th><lod< th=""></lod<></th></lod<>	190	<lod< th=""></lod<>
DDH	51	151	23	88	<lod< th=""><th>223</th><th><lod< th=""><th>206</th><th><lod< th=""></lod<></th></lod<></th></lod<>	223	<lod< th=""><th>206</th><th><lod< th=""></lod<></th></lod<>	206	<lod< th=""></lod<>
DDH	51.5	158	14	62	<lod< th=""><th>201</th><th>74</th><th>94</th><th>200</th></lod<>	201	74	94	200
DDH	52	167	26	100	<lod< th=""><th>225</th><th>71</th><th>177</th><th>228</th></lod<>	225	71	177	228
DDH	52.5	124	25	85	<lod< th=""><th>230</th><th>72</th><th>79</th><th><lod< th=""></lod<></th></lod<>	230	72	79	<lod< th=""></lod<>
DDH	53	138	10	65	<lod< th=""><th>208</th><th><lod< th=""><th>78</th><th><lod< th=""></lod<></th></lod<></th></lod<>	208	<lod< th=""><th>78</th><th><lod< th=""></lod<></th></lod<>	78	<lod< th=""></lod<>
DDH	53.5	129	13	88	<lod< th=""><th>238</th><th>71</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	238	71	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	54	174	9	82	<lod< th=""><th>194</th><th>60</th><th>91</th><th><lod< th=""></lod<></th></lod<>	194	60	91	<lod< th=""></lod<>
DDH	54.5	390	14	96	<lod< th=""><th>198</th><th><lod< th=""><th><lod< th=""><th>196</th></lod<></th></lod<></th></lod<>	198	<lod< th=""><th><lod< th=""><th>196</th></lod<></th></lod<>	<lod< th=""><th>196</th></lod<>	196
DDH	55	146	17	81	<lod< th=""><th>220</th><th><lod< th=""><th>87</th><th>223</th></lod<></th></lod<>	220	<lod< th=""><th>87</th><th>223</th></lod<>	87	223
DDH	55.5	149	6	74	<lod< th=""><th>197</th><th>95</th><th>105</th><th><lod< th=""></lod<></th></lod<>	197	95	105	<lod< th=""></lod<>
DDH	56	151	13	58	<lod< th=""><th>205</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	205	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	56.5	105	17	78	<lod< th=""><th>218</th><th>96</th><th>95</th><th><lod< th=""></lod<></th></lod<>	218	96	95	<lod< th=""></lod<>
DDH	57	99	10	61	<lod< th=""><th>200</th><th><lod< th=""><th><lod< th=""><th>243</th></lod<></th></lod<></th></lod<>	200	<lod< th=""><th><lod< th=""><th>243</th></lod<></th></lod<>	<lod< th=""><th>243</th></lod<>	243
DDH	57.5	142	13	59	<lod< th=""><th>214</th><th>58</th><th><lod< th=""><th>167</th></lod<></th></lod<>	214	58	<lod< th=""><th>167</th></lod<>	167
DDH	58	215	14	111	<lod< th=""><th>203</th><th>110</th><th>115</th><th>182</th></lod<>	203	110	115	182
DDH	58.5	163	8	76	147	193	90	95	226
DDH	59	110	21	66	<lod< th=""><th>212</th><th>65</th><th><lod< th=""><th>154</th></lod<></th></lod<>	212	65	<lod< th=""><th>154</th></lod<>	154
DDH	59.5	131	10	72	<lod< th=""><th>200</th><th><lod< th=""><th><lod< th=""><th>137</th></lod<></th></lod<></th></lod<>	200	<lod< th=""><th><lod< th=""><th>137</th></lod<></th></lod<>	<lod< th=""><th>137</th></lod<>	137
DDH	60	116	7	102	<lod< th=""><th>208</th><th>82</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	208	82	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
	I								

GNBDD003 – Narraburra Prospect

Туре	Depth_m	Zr _ppm	Nb _ppm	Y _ppm	Pr _ppm	Rb _ppm	La _ppm	Ce _ppm	Nd _ppm
DDH	0.5	305	13	25	<lod< th=""><th>78</th><th><lod< th=""><th>86</th><th>150</th></lod<></th></lod<>	78	<lod< th=""><th>86</th><th>150</th></lod<>	86	150
DDH	1	492	15	65	<lod< th=""><th>108</th><th><lod< th=""><th>79</th><th><lod< th=""></lod<></th></lod<></th></lod<>	108	<lod< th=""><th>79</th><th><lod< th=""></lod<></th></lod<>	79	<lod< th=""></lod<>
DDH	1.5	537	19	76	<lod< th=""><th>75</th><th>78</th><th>71</th><th><lod< th=""></lod<></th></lod<>	75	78	71	<lod< th=""></lod<>
DDH	2	527	14	48	<lod< th=""><th>85</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	85	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	2.5	292	14	26	109	119	53	<lod< th=""><th>194</th></lod<>	194
DDH	3	363	27	43	<lod< th=""><th>172</th><th>50</th><th>68</th><th><lod< th=""></lod<></th></lod<>	172	50	68	<lod< th=""></lod<>
DDH	3.5	419	18	33	<lod< th=""><th>153</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	153	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	4	516	25	32	<lod< th=""><th>156</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	156	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	4.5	462	15	54	<lod< th=""><th>91</th><th>60</th><th>72</th><th><lod< th=""></lod<></th></lod<>	91	60	72	<lod< th=""></lod<>
DDH	5	438	37	65	<lod< th=""><th>95</th><th><lod< th=""><th><lod< th=""><th>132</th></lod<></th></lod<></th></lod<>	95	<lod< th=""><th><lod< th=""><th>132</th></lod<></th></lod<>	<lod< th=""><th>132</th></lod<>	132
DDH	5.5	319	14	35	<lod< th=""><th>79</th><th><lod< th=""><th><lod< th=""><th>155</th></lod<></th></lod<></th></lod<>	79	<lod< th=""><th><lod< th=""><th>155</th></lod<></th></lod<>	<lod< th=""><th>155</th></lod<>	155
DDH	6	248	14	32	<lod< th=""><th>62</th><th>51</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	62	51	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	6.5	354	14	23	<lod< th=""><th>70</th><th><lod< th=""><th>79</th><th><lod< th=""></lod<></th></lod<></th></lod<>	70	<lod< th=""><th>79</th><th><lod< th=""></lod<></th></lod<>	79	<lod< th=""></lod<>
DDH	7	192	13	38	<lod< th=""><th>6</th><th>139</th><th>104</th><th>167</th></lod<>	6	139	104	167
DDH	7.5	173	8	28	<lod< th=""><th>42</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	42	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	8	201	9	7	<lod< th=""><th>4</th><th>55</th><th>67</th><th><lod< th=""></lod<></th></lod<>	4	55	67	<lod< th=""></lod<>
DDH	8.5	146	17	5	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	9	128	9	4	<lod< th=""><th>5</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	5	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	9.5	180	11	4	<lod< th=""><th>6</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	6	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	10	156	9	6	<lod< th=""><th>6</th><th>53</th><th>74</th><th><lod< th=""></lod<></th></lod<>	6	53	74	<lod< th=""></lod<>
DDH	10.5	199	9	6	<lod< th=""><th>19</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	19	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	11	212	9	3	91	18	<lod< th=""><th>63</th><th>158</th></lod<>	63	158
DDH	11.5	193	9	4	<lod< th=""><th>13</th><th>56</th><th>95</th><th><lod< th=""></lod<></th></lod<>	13	56	95	<lod< th=""></lod<>
DDH	12	190	11	3	<lod< th=""><th>6</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	6	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	12.5	178	11	4	<lod< th=""><th>6</th><th>47</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	6	47	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	13	180	10	3	<lod< th=""><th>6</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	6	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	13.5	156	9	4	110	6	<lod< th=""><th><lod< th=""><th>142</th></lod<></th></lod<>	<lod< th=""><th>142</th></lod<>	142
DDH	14	152	11	3	<lod< th=""><th>5</th><th>57</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	5	57	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	14.5	131	8	3	<lod< th=""><th>8</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	8	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	15	128	6	3	<lod< th=""><th>9</th><th>62</th><th><lod< th=""><th>178</th></lod<></th></lod<>	9	62	<lod< th=""><th>178</th></lod<>	178
DDH	15.5	219	12	4	127	13	<lod< th=""><th>120</th><th><lod< th=""></lod<></th></lod<>	120	<lod< th=""></lod<>
DDH	16	188	14	5	<lod< th=""><th>12</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	12	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	16.5	198	12	6	<lod< th=""><th>9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	9	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	17	133	7	4	<lod< th=""><th>11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	11	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	17.5	216	12	7	<lod< th=""><th>11</th><th>55</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	11	55	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	18	223	13	7	<lod< th=""><th>7</th><th><lod< th=""><th>72</th><th><lod< th=""></lod<></th></lod<></th></lod<>	7	<lod< th=""><th>72</th><th><lod< th=""></lod<></th></lod<>	72	<lod< th=""></lod<>
DDH	18.5	216	7	9	108	19	<lod< th=""><th><lod< th=""><th>163</th></lod<></th></lod<>	<lod< th=""><th>163</th></lod<>	163
DDH	19	148	8	8	<lod< th=""><th>13</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	13	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	19.5	123	6	6	<lod< th=""><th>7</th><th><lod< th=""><th>89</th><th><lod< th=""></lod<></th></lod<></th></lod<>	7	<lod< th=""><th>89</th><th><lod< th=""></lod<></th></lod<>	89	<lod< th=""></lod<>
DDH	20	268	16	9	<lod< th=""><th>8</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	8	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	20.5	239	15	7	<lod< th=""><th>9</th><th>54</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	9	54	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	21	216	11	6	<lod< th=""><th>13</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	13	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	21.5	166	9	6	<lod< th=""><th>15</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	15	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>

Туре	Depth_m	Zr _ppm	Nb _ppm	Y _ppm	Pr _ppm	Rb _ppm	La _ppm	Ce _ppm	Nd _ppm
DDH	22	177	10	5	<lod< th=""><th>4</th><th><lod< th=""><th>67</th><th><lod< th=""></lod<></th></lod<></th></lod<>	4	<lod< th=""><th>67</th><th><lod< th=""></lod<></th></lod<>	67	<lod< th=""></lod<>
DDH	22.5	183	18	3	<lod< th=""><th>15</th><th><lod< th=""><th>90</th><th><lod< th=""></lod<></th></lod<></th></lod<>	15	<lod< th=""><th>90</th><th><lod< th=""></lod<></th></lod<>	90	<lod< th=""></lod<>
DDH	23	143	11	4	<lod< th=""><th>7</th><th><lod< th=""><th>102</th><th><lod< th=""></lod<></th></lod<></th></lod<>	7	<lod< th=""><th>102</th><th><lod< th=""></lod<></th></lod<>	102	<lod< th=""></lod<>
DDH	23.5	163	8	6	<lod< th=""><th>9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	9	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	24	191	16	6	<lod< th=""><th>11</th><th><lod< th=""><th>79</th><th>150</th></lod<></th></lod<>	11	<lod< th=""><th>79</th><th>150</th></lod<>	79	150
DDH	24.5	132	7	3	<lod< th=""><th>12</th><th>61</th><th>75</th><th>193</th></lod<>	12	61	75	193
DDH	25	149	8	5	<lod< th=""><th>5</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	5	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	25.5	248	18	6	<lod< th=""><th>13</th><th>74</th><th><lod< th=""><th>171</th></lod<></th></lod<>	13	74	<lod< th=""><th>171</th></lod<>	171
DDH	26	155	12	4	135	12	<lod< th=""><th><lod< th=""><th>182</th></lod<></th></lod<>	<lod< th=""><th>182</th></lod<>	182
DDH	26.5	173	11	5	<lod< th=""><th>9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	9	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	27	202	17	6	<lod< th=""><th>7</th><th><lod< th=""><th>70</th><th><lod< th=""></lod<></th></lod<></th></lod<>	7	<lod< th=""><th>70</th><th><lod< th=""></lod<></th></lod<>	70	<lod< th=""></lod<>
DDH	27.5	157	10	25	<lod< th=""><th>5</th><th>78</th><th>77</th><th><lod< th=""></lod<></th></lod<>	5	78	77	<lod< th=""></lod<>
DDH	28	231	15	9	<lod< th=""><th>8</th><th><lod< th=""><th>155</th><th><lod< th=""></lod<></th></lod<></th></lod<>	8	<lod< th=""><th>155</th><th><lod< th=""></lod<></th></lod<>	155	<lod< th=""></lod<>
DDH	28.5	157	7	7	<lod< th=""><th>11</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	11	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	29	227	16	10	<lod< th=""><th>8</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	8	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	29.5	170	10	4	<lod< th=""><th>8</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	8	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	30	156	10	6	<lod< th=""><th>9</th><th>68</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	9	68	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	30.5	164	8	6	<lod< th=""><th>8</th><th>65</th><th>132</th><th><lod< th=""></lod<></th></lod<>	8	65	132	<lod< th=""></lod<>
DDH	31	236	12	6	<lod< th=""><th>14</th><th>67</th><th>106</th><th><lod< th=""></lod<></th></lod<>	14	67	106	<lod< th=""></lod<>
DDH	31.5	162	10	6	<lod< th=""><th>16</th><th>51</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	16	51	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	32	203	15	6	<lod< th=""><th>14</th><th><lod< th=""><th>145</th><th><lod< th=""></lod<></th></lod<></th></lod<>	14	<lod< th=""><th>145</th><th><lod< th=""></lod<></th></lod<>	145	<lod< th=""></lod<>
DDH	32.5	226	15	7	<lod< th=""><th>15</th><th><lod< th=""><th><lod< th=""><th>156</th></lod<></th></lod<></th></lod<>	15	<lod< th=""><th><lod< th=""><th>156</th></lod<></th></lod<>	<lod< th=""><th>156</th></lod<>	156
DDH	33	293	14	5	<lod< th=""><th>12</th><th>69</th><th>592</th><th><lod< th=""></lod<></th></lod<>	12	69	592	<lod< th=""></lod<>
DDH	33.5	76	10	5	<lod< th=""><th>10</th><th>89</th><th>103</th><th><lod< th=""></lod<></th></lod<>	10	89	103	<lod< th=""></lod<>
DDH	34	218	6	15	167	<lod< th=""><th>290</th><th>233</th><th>270</th></lod<>	290	233	270
DDH	34.5	196	8	8	<lod< th=""><th>5</th><th>63</th><th>72</th><th><lod< th=""></lod<></th></lod<>	5	63	72	<lod< th=""></lod<>
DDH	35	191	11	12	<lod< th=""><th>6</th><th>173</th><th>215</th><th>249</th></lod<>	6	173	215	249
DDH	35.5	261	11	21	158	5	440	364	337
DDH	36	257	8	18	<lod< th=""><th>4</th><th>215</th><th>228</th><th>239</th></lod<>	4	215	228	239
DDH	36.5	195	11	8	<lod< th=""><th>27</th><th>127</th><th>129</th><th><lod< th=""></lod<></th></lod<>	27	127	129	<lod< th=""></lod<>
DDH	37	201	8	8	130	9	<lod< th=""><th>75</th><th><lod< th=""></lod<></th></lod<>	75	<lod< th=""></lod<>
DDH	37.5	132	7	49	<lod< th=""><th>4</th><th>264</th><th>307</th><th>465</th></lod<>	4	264	307	465
DDH	38	194	8	6	<lod< th=""><th>4</th><th>85</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	4	85	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	38.5	223	7	23	<lod< th=""><th>7</th><th>160</th><th>207</th><th><lod< th=""></lod<></th></lod<>	7	160	207	<lod< th=""></lod<>
DDH	39	169	10	10	<lod< th=""><th>9</th><th>73</th><th>122</th><th><lod< th=""></lod<></th></lod<>	9	73	122	<lod< th=""></lod<>
DDH	39.5	172	7	10	<lod< th=""><th>6</th><th>141</th><th>114</th><th><lod< th=""></lod<></th></lod<>	6	141	114	<lod< th=""></lod<>
DDH	40	166	8	7	<lod< th=""><th>3</th><th><lod< th=""><th>74</th><th><lod< th=""></lod<></th></lod<></th></lod<>	3	<lod< th=""><th>74</th><th><lod< th=""></lod<></th></lod<>	74	<lod< th=""></lod<>
DDH	40.5	213	10	9	<lod< th=""><th>2</th><th>74</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	2	74	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	41	246	9	15	<lod< th=""><th>7</th><th>134</th><th>114</th><th>251</th></lod<>	7	134	114	251
DDH	41.5	122	5	31	<lod< th=""><th>15</th><th>202</th><th>767</th><th>355</th></lod<>	15	202	767	355
DDH	42	105	10	33	161	10	88	182	197
DDH	42.5	157	5	16	<lod< th=""><th>6</th><th>86</th><th>175</th><th><lod< th=""></lod<></th></lod<>	6	86	175	<lod< th=""></lod<>
DDH	43	139	<lod< th=""><th>10</th><th><lod< th=""><th>13</th><th><lod< th=""><th>68</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	10	<lod< th=""><th>13</th><th><lod< th=""><th>68</th><th><lod< th=""></lod<></th></lod<></th></lod<>	13	<lod< th=""><th>68</th><th><lod< th=""></lod<></th></lod<>	68	<lod< th=""></lod<>
DDH	43.5	81	3	14	<lod< th=""><th>25</th><th><lod< th=""><th>219</th><th><lod< th=""></lod<></th></lod<></th></lod<>	25	<lod< th=""><th>219</th><th><lod< th=""></lod<></th></lod<>	219	<lod< th=""></lod<>
DDH	44	387	11	32	197	6	222	284	200

Туре	Depth_m	Zr _ppm	Nb _ppm	Y _ppm	Pr _ppm	Rb _ppm	La _ppm	Ce _ppm	Nd _ppm
DDH	44.5	195	5	14	<lod< th=""><th>8</th><th>91</th><th>107</th><th><lod< th=""></lod<></th></lod<>	8	91	107	<lod< th=""></lod<>
DDH	45	126	4	13	<lod< th=""><th>4</th><th><lod< th=""><th>80</th><th><lod< th=""></lod<></th></lod<></th></lod<>	4	<lod< th=""><th>80</th><th><lod< th=""></lod<></th></lod<>	80	<lod< th=""></lod<>
DDH	45.5	166	8	14	<lod< th=""><th>23</th><th>116</th><th>209</th><th><lod< th=""></lod<></th></lod<>	23	116	209	<lod< th=""></lod<>
DDH	46	167	6	13	<lod< th=""><th>24</th><th>100</th><th>161</th><th>220</th></lod<>	24	100	161	220
DDH	46.5	227	8	17	<lod< th=""><th>70</th><th>70</th><th>90</th><th><lod< th=""></lod<></th></lod<>	70	70	90	<lod< th=""></lod<>
DDH	47	233	8	16	<lod< th=""><th>117</th><th>64</th><th><lod< th=""><th>183</th></lod<></th></lod<>	117	64	<lod< th=""><th>183</th></lod<>	183
DDH	47.5	262	11	20	<lod< th=""><th>210</th><th><lod< th=""><th>129</th><th><lod< th=""></lod<></th></lod<></th></lod<>	210	<lod< th=""><th>129</th><th><lod< th=""></lod<></th></lod<>	129	<lod< th=""></lod<>
DDH	48	240	12	5	<lod< th=""><th>89</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	89	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	48.5	183	10	14	<lod< th=""><th>55</th><th>78</th><th>210</th><th>292</th></lod<>	55	78	210	292
DDH	49	283	5	388	<lod< th=""><th>235</th><th><lod< th=""><th><lod< th=""><th>302</th></lod<></th></lod<></th></lod<>	235	<lod< th=""><th><lod< th=""><th>302</th></lod<></th></lod<>	<lod< th=""><th>302</th></lod<>	302
DDH	49.5	278	7	100	<lod< th=""><th>125</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	125	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	50	279	6	1814	<lod< th=""><th>70</th><th>83</th><th>121</th><th>336</th></lod<>	70	83	121	336
DDH	50.5	150	5	27	<lod< th=""><th>47</th><th><lod< th=""><th>94</th><th><lod< th=""></lod<></th></lod<></th></lod<>	47	<lod< th=""><th>94</th><th><lod< th=""></lod<></th></lod<>	94	<lod< th=""></lod<>
DDH	51	238	6	37	<lod< th=""><th>104</th><th>66</th><th>101</th><th><lod< th=""></lod<></th></lod<>	104	66	101	<lod< th=""></lod<>
DDH	51.5	132	5	32	<lod< th=""><th>92</th><th>63</th><th>72</th><th><lod< th=""></lod<></th></lod<>	92	63	72	<lod< th=""></lod<>
DDH	52	220	8	37	<lod< th=""><th>65</th><th>101</th><th>106</th><th><lod< th=""></lod<></th></lod<>	65	101	106	<lod< th=""></lod<>
DDH	52.5	273	11	43	<lod< th=""><th>64</th><th>100</th><th>165</th><th>270</th></lod<>	64	100	165	270
DDH	53	258	10	33	151	78	83	133	228
DDH	53.5	193	11	44	<lod< th=""><th>51</th><th>73</th><th>122</th><th><lod< th=""></lod<></th></lod<>	51	73	122	<lod< th=""></lod<>
DDH	54	170	12	40	<lod< th=""><th>73</th><th>86</th><th>170</th><th><lod< th=""></lod<></th></lod<>	73	86	170	<lod< th=""></lod<>
DDH	54.5	215	11	36	<lod< th=""><th>79</th><th>80</th><th><lod< th=""><th>246</th></lod<></th></lod<>	79	80	<lod< th=""><th>246</th></lod<>	246
DDH	55	158	6	29	<lod< th=""><th>68</th><th><lod< th=""><th>106</th><th><lod< th=""></lod<></th></lod<></th></lod<>	68	<lod< th=""><th>106</th><th><lod< th=""></lod<></th></lod<>	106	<lod< th=""></lod<>
DDH	55.5	18	<lod< th=""><th>6</th><th><lod< th=""><th>150</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	6	<lod< th=""><th>150</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	150	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	56	81	8	31	<lod< th=""><th>86</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	86	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	56.5	166	7	42	<lod< th=""><th>62</th><th><lod< th=""><th>113</th><th><lod< th=""></lod<></th></lod<></th></lod<>	62	<lod< th=""><th>113</th><th><lod< th=""></lod<></th></lod<>	113	<lod< th=""></lod<>
DDH	57	340	8	37	<lod< th=""><th>74</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	74	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	57.5	246	8	38	<lod< th=""><th>56</th><th>70</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	56	70	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	58	116	3	20	<lod< th=""><th>80</th><th><lod< th=""><th><lod< th=""><th>203</th></lod<></th></lod<></th></lod<>	80	<lod< th=""><th><lod< th=""><th>203</th></lod<></th></lod<>	<lod< th=""><th>203</th></lod<>	203
DDH	58.5	274	6	42	<lod< th=""><th>92</th><th><lod< th=""><th>106</th><th>210</th></lod<></th></lod<>	92	<lod< th=""><th>106</th><th>210</th></lod<>	106	210
DDH	59	65	<lod< th=""><th>6</th><th><lod< th=""><th>123</th><th><lod< th=""><th>117</th><th>210</th></lod<></th></lod<></th></lod<>	6	<lod< th=""><th>123</th><th><lod< th=""><th>117</th><th>210</th></lod<></th></lod<>	123	<lod< th=""><th>117</th><th>210</th></lod<>	117	210
DDH	59.5	160	6	26	<lod< th=""><th>70</th><th><lod< th=""><th>96</th><th><lod< th=""></lod<></th></lod<></th></lod<>	70	<lod< th=""><th>96</th><th><lod< th=""></lod<></th></lod<>	96	<lod< th=""></lod<>
DDH	60	242	7	37	<lod< th=""><th>71</th><th><lod< th=""><th>126</th><th><lod< th=""></lod<></th></lod<></th></lod<>	71	<lod< th=""><th>126</th><th><lod< th=""></lod<></th></lod<>	126	<lod< th=""></lod<>
DDH	60.5	298	13	50	<lod< th=""><th>80</th><th><lod< th=""><th><lod< th=""><th>220</th></lod<></th></lod<></th></lod<>	80	<lod< th=""><th><lod< th=""><th>220</th></lod<></th></lod<>	<lod< th=""><th>220</th></lod<>	220
DDH	61	90	12	50	<lod< th=""><th>109</th><th>158</th><th>260</th><th>306</th></lod<>	109	158	260	306
DDH	61.5	289	8	46	<lod< th=""><th>71</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	71	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	62	326	12	64	149	91	60	95	<lod< th=""></lod<>
DDH	62.5	203	14	64	<lod< th=""><th>98</th><th><lod< th=""><th>119</th><th>208</th></lod<></th></lod<>	98	<lod< th=""><th>119</th><th>208</th></lod<>	119	208
DDH	63	313	7	50	<lod< th=""><th>94</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	94	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	63.4	232	16	56	<lod< th=""><th>126</th><th><lod< th=""><th>117</th><th><lod< th=""></lod<></th></lod<></th></lod<>	126	<lod< th=""><th>117</th><th><lod< th=""></lod<></th></lod<>	117	<lod< th=""></lod<>

GNBDD004 – Narraburra Prospect

Туре	Depth_m	Zr _ppm	Nb _ppm	Y _ppm	Pr _ppm	Rb _ppm	La _ppm	Ce _ppm	Nd _ppm
DDH	0.5	341	5	14	<lod< th=""><th>72</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	72	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	1	359	8	19	<lod< th=""><th>104</th><th><lod< th=""><th>73</th><th><lod< th=""></lod<></th></lod<></th></lod<>	104	<lod< th=""><th>73</th><th><lod< th=""></lod<></th></lod<>	73	<lod< th=""></lod<>
DDH	1.5	340	6	43	<lod< th=""><th>67</th><th>84</th><th>507</th><th>159</th></lod<>	67	84	507	159
DDH	2	157	9	26	<lod< th=""><th>3</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	3	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	2.5	178	15	23	<lod< th=""><th>5</th><th>57</th><th>75</th><th><lod< th=""></lod<></th></lod<>	5	57	75	<lod< th=""></lod<>
DDH	3	177	14	29	171	3	63	97	206
DDH	3.5	171	14	15	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th>181</th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th>181</th></lod<></th></lod<>	<lod< th=""><th>181</th></lod<>	181
DDH	4	187	14	15	<lod< th=""><th>8</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	8	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	4.5	182	16	14	<lod< th=""><th>3</th><th>59</th><th>102</th><th><lod< th=""></lod<></th></lod<>	3	59	102	<lod< th=""></lod<>
DDH	5	190	14	14	<lod< th=""><th>3</th><th>64</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	3	64	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	5.5	170	14	12	129	<lod< th=""><th><lod< th=""><th>80</th><th>191</th></lod<></th></lod<>	<lod< th=""><th>80</th><th>191</th></lod<>	80	191
DDH	6	196	16	13	<lod< th=""><th>1</th><th><lod< th=""><th><lod< th=""><th>186</th></lod<></th></lod<></th></lod<>	1	<lod< th=""><th><lod< th=""><th>186</th></lod<></th></lod<>	<lod< th=""><th>186</th></lod<>	186
DDH	6.5	180	14	12	<lod< th=""><th>1</th><th><lod< th=""><th>72</th><th><lod< th=""></lod<></th></lod<></th></lod<>	1	<lod< th=""><th>72</th><th><lod< th=""></lod<></th></lod<>	72	<lod< th=""></lod<>
DDH	7	184	11	11	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th>170</th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th>170</th></lod<></th></lod<>	<lod< th=""><th>170</th></lod<>	170
DDH	7.5	184	14	10	138	2	72	91	<lod< th=""></lod<>
DDH	8	192	15	9	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	8.5	225	18	11	<lod< th=""><th>1</th><th>57</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	1	57	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	9	177	14	10	121	2	<lod< th=""><th>75</th><th>167</th></lod<>	75	167
DDH	9.5	199	14	12	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	10	165	13	8	<lod< th=""><th>1</th><th>53</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	1	53	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	10.5	195	13	9	<lod< th=""><th>2</th><th><lod< th=""><th>68</th><th><lod< th=""></lod<></th></lod<></th></lod<>	2	<lod< th=""><th>68</th><th><lod< th=""></lod<></th></lod<>	68	<lod< th=""></lod<>
DDH	11	249	18	14	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	11.5	246	18	12	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	12	293	27	18	<lod< th=""><th><lod< th=""><th>53</th><th>71</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>53</th><th>71</th><th><lod< th=""></lod<></th></lod<>	53	71	<lod< th=""></lod<>
DDH	12.5	270	24	12	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	13	254	19	11	<lod< th=""><th>1</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	1	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	13.5	268	19	13	<lod< th=""><th>1</th><th><lod< th=""><th><lod< th=""><th>164</th></lod<></th></lod<></th></lod<>	1	<lod< th=""><th><lod< th=""><th>164</th></lod<></th></lod<>	<lod< th=""><th>164</th></lod<>	164
DDH	14	249	21	12	<lod< th=""><th>2</th><th><lod< th=""><th>74</th><th><lod< th=""></lod<></th></lod<></th></lod<>	2	<lod< th=""><th>74</th><th><lod< th=""></lod<></th></lod<>	74	<lod< th=""></lod<>
DDH	14.5	239	18	11	154	1	<lod< th=""><th>96</th><th>232</th></lod<>	96	232
DDH	15	246	22	11	<lod< th=""><th>2</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	2	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	15.5	218	18	10	142	<lod< th=""><th><lod< th=""><th><lod< th=""><th>171</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>171</th></lod<></th></lod<>	<lod< th=""><th>171</th></lod<>	171
DDH	16	174	14	9	<lod< th=""><th>3</th><th><lod< th=""><th>83</th><th><lod< th=""></lod<></th></lod<></th></lod<>	3	<lod< th=""><th>83</th><th><lod< th=""></lod<></th></lod<>	83	<lod< th=""></lod<>
DDH	16.5	165	14	9	108	4	<lod< th=""><th><lod< th=""><th>199</th></lod<></th></lod<>	<lod< th=""><th>199</th></lod<>	199
DDH	17	158	13	10	104	4	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	17.5	120	10	8	<lod< th=""><th>3</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	3	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	18	144	15	9	<lod< th=""><th>4</th><th>62</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	4	62	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	18.5	118	8	5	<lod< th=""><th>5</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	5	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	19	124	8	7	<lod< th=""><th>5</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	5	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	19.5	182	19	7	<lod< th=""><th>7</th><th><lod< th=""><th><lod< th=""><th>167</th></lod<></th></lod<></th></lod<>	7	<lod< th=""><th><lod< th=""><th>167</th></lod<></th></lod<>	<lod< th=""><th>167</th></lod<>	167
DDH	20	196	14	10	<lod< th=""><th>7</th><th><lod< th=""><th><lod< th=""><th>217</th></lod<></th></lod<></th></lod<>	7	<lod< th=""><th><lod< th=""><th>217</th></lod<></th></lod<>	<lod< th=""><th>217</th></lod<>	217
DDH	20.5	101	6	4	110	4	<lod< th=""><th><lod< th=""><th>178</th></lod<></th></lod<>	<lod< th=""><th>178</th></lod<>	178
DDH	21	115	9	4	<lod< th=""><th>5</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	5	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	21.5	88	7	4	<lod< th=""><th>2</th><th><lod< th=""><th>65</th><th><lod< th=""></lod<></th></lod<></th></lod<>	2	<lod< th=""><th>65</th><th><lod< th=""></lod<></th></lod<>	65	<lod< th=""></lod<>
DDH	22	102	11	6	<lod< th=""><th>7</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	7	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>

Туре	Depth_m	Zr _ppm	Nb _ppm	Y _ppm	Pr _ppm	Rb _ppm	La _ppm	Ce _ppm	Nd _ppm
DDH	22.5	105	9	5	<lod< th=""><th>4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	4	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	23	94	9	6	111	4	<lod< th=""><th>68</th><th>161</th></lod<>	68	161
DDH	23.5	138	9	7	<lod< th=""><th>5</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	5	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	24	108	10	10	<lod< th=""><th>4</th><th>56</th><th>83</th><th><lod< th=""></lod<></th></lod<>	4	56	83	<lod< th=""></lod<>
DDH	24.5	166	12	12	119	8	67	101	<lod< th=""></lod<>
DDH	25	88	5	7	<lod< th=""><th>5</th><th><lod< th=""><th>84</th><th><lod< th=""></lod<></th></lod<></th></lod<>	5	<lod< th=""><th>84</th><th><lod< th=""></lod<></th></lod<>	84	<lod< th=""></lod<>
DDH	25.5	72	3	7	<lod< th=""><th>6</th><th><lod< th=""><th>139</th><th><lod< th=""></lod<></th></lod<></th></lod<>	6	<lod< th=""><th>139</th><th><lod< th=""></lod<></th></lod<>	139	<lod< th=""></lod<>
DDH	26	122	6	13	<lod< th=""><th>7</th><th>51</th><th>112</th><th><lod< th=""></lod<></th></lod<>	7	51	112	<lod< th=""></lod<>
DDH	26.5	99	8	12	<lod< th=""><th>4</th><th><lod< th=""><th>97</th><th><lod< th=""></lod<></th></lod<></th></lod<>	4	<lod< th=""><th>97</th><th><lod< th=""></lod<></th></lod<>	97	<lod< th=""></lod<>
DDH	27	115	11	13	<lod< th=""><th>5</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	5	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	27.5	111	6	21	<lod< th=""><th>4</th><th>68</th><th>218</th><th><lod< th=""></lod<></th></lod<>	4	68	218	<lod< th=""></lod<>
DDH	28	110	6	16	<lod< th=""><th>5</th><th>60</th><th>92</th><th><lod< th=""></lod<></th></lod<>	5	60	92	<lod< th=""></lod<>
DDH	28.5	87	5	14	<lod< th=""><th>5</th><th><lod< th=""><th>80</th><th>152</th></lod<></th></lod<>	5	<lod< th=""><th>80</th><th>152</th></lod<>	80	152
DDH	29	142	8	17	<lod< th=""><th>6</th><th><lod< th=""><th>70</th><th><lod< th=""></lod<></th></lod<></th></lod<>	6	<lod< th=""><th>70</th><th><lod< th=""></lod<></th></lod<>	70	<lod< th=""></lod<>
DDH	29.5	86	4	17	<lod< th=""><th>5</th><th><lod< th=""><th>114</th><th><lod< th=""></lod<></th></lod<></th></lod<>	5	<lod< th=""><th>114</th><th><lod< th=""></lod<></th></lod<>	114	<lod< th=""></lod<>
DDH	30	183	12	29	<lod< th=""><th>5</th><th>52</th><th>124</th><th>167</th></lod<>	5	52	124	167
DDH	30.5	172	8	20	<lod< th=""><th>5</th><th><lod< th=""><th>142</th><th><lod< th=""></lod<></th></lod<></th></lod<>	5	<lod< th=""><th>142</th><th><lod< th=""></lod<></th></lod<>	142	<lod< th=""></lod<>
DDH	31	91	9	16	<lod< th=""><th>4</th><th><lod< th=""><th>95</th><th><lod< th=""></lod<></th></lod<></th></lod<>	4	<lod< th=""><th>95</th><th><lod< th=""></lod<></th></lod<>	95	<lod< th=""></lod<>
DDH	31.5	143	10	38	<lod< th=""><th>8</th><th>73</th><th>152</th><th>169</th></lod<>	8	73	152	169
DDH	32	104	5	22	<lod< th=""><th>5</th><th><lod< th=""><th>190</th><th><lod< th=""></lod<></th></lod<></th></lod<>	5	<lod< th=""><th>190</th><th><lod< th=""></lod<></th></lod<>	190	<lod< th=""></lod<>
DDH	32.5	123	6	51	142	3	165	177	278
DDH	33	110	7	15	126	8	66	76	<lod< th=""></lod<>
DDH	33.5	122	10	25	<lod< th=""><th>10</th><th><lod< th=""><th>154</th><th><lod< th=""></lod<></th></lod<></th></lod<>	10	<lod< th=""><th>154</th><th><lod< th=""></lod<></th></lod<>	154	<lod< th=""></lod<>
DDH	34	104	9	17	<lod< th=""><th>6</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	6	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	34.5	100	<lod< th=""><th>17</th><th><lod< th=""><th>8</th><th>62</th><th>159</th><th><lod< th=""></lod<></th></lod<></th></lod<>	17	<lod< th=""><th>8</th><th>62</th><th>159</th><th><lod< th=""></lod<></th></lod<>	8	62	159	<lod< th=""></lod<>
DDH	35	151	10	26	<lod< th=""><th>8</th><th>50</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	8	50	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	35.5	84	4	13	<lod< th=""><th>4</th><th><lod< th=""><th>65</th><th><lod< th=""></lod<></th></lod<></th></lod<>	4	<lod< th=""><th>65</th><th><lod< th=""></lod<></th></lod<>	65	<lod< th=""></lod<>
DDH	36	121	7	51	<lod< th=""><th>9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	9	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	36.5	122	8	24	<lod< th=""><th>4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	4	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	37	100	8	17	134	7	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	37.5	112	7	19	<lod< th=""><th>25</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	25	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	38	148	11	33	<lod< th=""><th>12</th><th><lod< th=""><th>468</th><th><lod< th=""></lod<></th></lod<></th></lod<>	12	<lod< th=""><th>468</th><th><lod< th=""></lod<></th></lod<>	468	<lod< th=""></lod<>
DDH	38.5	140	11	25	<lod< th=""><th>23</th><th><lod< th=""><th><lod< th=""><th>167</th></lod<></th></lod<></th></lod<>	23	<lod< th=""><th><lod< th=""><th>167</th></lod<></th></lod<>	<lod< th=""><th>167</th></lod<>	167
DDH	39	137	11	25	116	29	<lod< th=""><th>70</th><th><lod< th=""></lod<></th></lod<>	70	<lod< th=""></lod<>
DDH	39.5	99	8	16	<lod< th=""><th>10</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	10	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	40	201	31	29	<lod< th=""><th>39</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	39	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	40.5	174	12	25	<lod< th=""><th>17</th><th>74</th><th>120</th><th><lod< th=""></lod<></th></lod<>	17	74	120	<lod< th=""></lod<>
DDH	41	193	21	29	<lod< th=""><th>28</th><th>69</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	28	69	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	41.5	100	9	17	<lod< th=""><th>20</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	20	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	42	69	5	23	<lod< th=""><th>56</th><th>62</th><th><lod< th=""><th>163</th></lod<></th></lod<>	56	62	<lod< th=""><th>163</th></lod<>	163
DDH	42.5	148	10	22	143	81	<lod< th=""><th>120</th><th><lod< th=""></lod<></th></lod<>	120	<lod< th=""></lod<>
DDH	43	102	4	23	<lod< th=""><th>152</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	152	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	43.5	124	9	27	<lod< th=""><th>158</th><th>68</th><th>257</th><th><lod< th=""></lod<></th></lod<>	158	68	257	<lod< th=""></lod<>
DDH	44	128	14	36	<lod< th=""><th>571</th><th>116</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	571	116	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	44.5	114	11	20	<lod< th=""><th>157</th><th>53</th><th>253</th><th><lod< th=""></lod<></th></lod<>	157	53	253	<lod< th=""></lod<>

Туре	Depth_m	Zr _ppm	Nb _ppm	Y _ppm	Pr _ppm	Rb _ppm	La _ppm	Ce _ppm	Nd _ppm
DDH	45	101	9	21	124	262	67	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	45.5	139	11	66	<lod< th=""><th>317</th><th>93</th><th>110</th><th><lod< th=""></lod<></th></lod<>	317	93	110	<lod< th=""></lod<>
DDH	46	173	14	58	<lod< th=""><th>249</th><th>90</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	249	90	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	46.5	94	8	87	<lod< th=""><th>227</th><th><lod< th=""><th><lod< th=""><th>125</th></lod<></th></lod<></th></lod<>	227	<lod< th=""><th><lod< th=""><th>125</th></lod<></th></lod<>	<lod< th=""><th>125</th></lod<>	125
DDH	47	136	15	79	<lod< th=""><th>295</th><th>64</th><th>134</th><th><lod< th=""></lod<></th></lod<>	295	64	134	<lod< th=""></lod<>
DDH	47.5	80	5	36	<lod< th=""><th>176</th><th>82</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	176	82	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	48	75	7	34	<lod< th=""><th>192</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	192	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	48.5	56	<lod< th=""><th>64</th><th>110</th><th>135</th><th>321</th><th><lod< th=""><th>442</th></lod<></th></lod<>	64	110	135	321	<lod< th=""><th>442</th></lod<>	442
DDH	49	98	<lod< th=""><th>242</th><th><lod< th=""><th>240</th><th>109</th><th>117</th><th>204</th></lod<></th></lod<>	242	<lod< th=""><th>240</th><th>109</th><th>117</th><th>204</th></lod<>	240	109	117	204
DDH	49.5	48	<lod< th=""><th>82</th><th><lod< th=""><th>159</th><th><lod< th=""><th>189</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	82	<lod< th=""><th>159</th><th><lod< th=""><th>189</th><th><lod< th=""></lod<></th></lod<></th></lod<>	159	<lod< th=""><th>189</th><th><lod< th=""></lod<></th></lod<>	189	<lod< th=""></lod<>
DDH	50	100	9	137	<lod< th=""><th>187</th><th>115</th><th>565</th><th><lod< th=""></lod<></th></lod<>	187	115	565	<lod< th=""></lod<>
DDH	50.5	138	9	54	<lod< th=""><th>167</th><th>81</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	167	81	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	51	73	7	28	<lod< th=""><th>240</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	240	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	51.5	100	5	43	<lod< th=""><th>111</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	111	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	52	46	7	47	<lod< th=""><th>191</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	191	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	52.5	46	9	33	<lod< th=""><th>305</th><th><lod< th=""><th>80</th><th><lod< th=""></lod<></th></lod<></th></lod<>	305	<lod< th=""><th>80</th><th><lod< th=""></lod<></th></lod<>	80	<lod< th=""></lod<>
DDH	53	98	<lod< th=""><th>45</th><th><lod< th=""><th>147</th><th><lod< th=""><th>79</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	45	<lod< th=""><th>147</th><th><lod< th=""><th>79</th><th><lod< th=""></lod<></th></lod<></th></lod<>	147	<lod< th=""><th>79</th><th><lod< th=""></lod<></th></lod<>	79	<lod< th=""></lod<>
DDH	53.5	58	5	20	126	106	73	94	<lod< th=""></lod<>
DDH	54	52	<lod< th=""><th>16</th><th><lod< th=""><th>113</th><th>62</th><th><lod< th=""><th>168</th></lod<></th></lod<></th></lod<>	16	<lod< th=""><th>113</th><th>62</th><th><lod< th=""><th>168</th></lod<></th></lod<>	113	62	<lod< th=""><th>168</th></lod<>	168
DDH	54.5	126	7	43	<lod< th=""><th>138</th><th>66</th><th>72</th><th><lod< th=""></lod<></th></lod<>	138	66	72	<lod< th=""></lod<>
DDH	55	53	3	19	<lod< th=""><th>150</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	150	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	55.5	58	<lod< th=""><th>19</th><th><lod< th=""><th>233</th><th>71</th><th>88</th><th><lod< th=""></lod<></th></lod<></th></lod<>	19	<lod< th=""><th>233</th><th>71</th><th>88</th><th><lod< th=""></lod<></th></lod<>	233	71	88	<lod< th=""></lod<>
DDH	56	73	4	38	<lod< th=""><th>177</th><th><lod< th=""><th>94</th><th><lod< th=""></lod<></th></lod<></th></lod<>	177	<lod< th=""><th>94</th><th><lod< th=""></lod<></th></lod<>	94	<lod< th=""></lod<>
DDH	56.5	88	5	34	131	140	<lod< th=""><th>88</th><th><lod< th=""></lod<></th></lod<>	88	<lod< th=""></lod<>
DDH	57	102	8	30	<lod< th=""><th>227</th><th>88</th><th>118</th><th><lod< th=""></lod<></th></lod<>	227	88	118	<lod< th=""></lod<>
DDH	57.5	45	<lod< th=""><th>14</th><th><lod< th=""><th>220</th><th><lod< th=""><th>117</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	14	<lod< th=""><th>220</th><th><lod< th=""><th>117</th><th><lod< th=""></lod<></th></lod<></th></lod<>	220	<lod< th=""><th>117</th><th><lod< th=""></lod<></th></lod<>	117	<lod< th=""></lod<>
DDH	58	95	11	34	<lod< th=""><th>137</th><th><lod< th=""><th>93</th><th><lod< th=""></lod<></th></lod<></th></lod<>	137	<lod< th=""><th>93</th><th><lod< th=""></lod<></th></lod<>	93	<lod< th=""></lod<>
DDH	58.5	62	4	19	<lod< th=""><th>168</th><th><lod< th=""><th>86</th><th>181</th></lod<></th></lod<>	168	<lod< th=""><th>86</th><th>181</th></lod<>	86	181
DDH	59	88	9	35	<lod< th=""><th>168</th><th>69</th><th>79</th><th><lod< th=""></lod<></th></lod<>	168	69	79	<lod< th=""></lod<>
DDH	59.5	61	<lod< th=""><th>22</th><th><lod< th=""><th>172</th><th><lod< th=""><th><lod< th=""><th>175</th></lod<></th></lod<></th></lod<></th></lod<>	22	<lod< th=""><th>172</th><th><lod< th=""><th><lod< th=""><th>175</th></lod<></th></lod<></th></lod<>	172	<lod< th=""><th><lod< th=""><th>175</th></lod<></th></lod<>	<lod< th=""><th>175</th></lod<>	175
DDH	60	124	6	44	<lod< th=""><th>216</th><th><lod< th=""><th>89</th><th>241</th></lod<></th></lod<>	216	<lod< th=""><th>89</th><th>241</th></lod<>	89	241
DDH	60.5	82	<lod< th=""><th>20</th><th><lod< th=""><th>172</th><th>83</th><th>114</th><th>205</th></lod<></th></lod<>	20	<lod< th=""><th>172</th><th>83</th><th>114</th><th>205</th></lod<>	172	83	114	205
DDH	61	54	4	25	<lod< th=""><th>289</th><th>92</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	289	92	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
DDH	61.5	70	<lod< th=""><th>24</th><th><lod< th=""><th>133</th><th>65</th><th>120</th><th><lod< th=""></lod<></th></lod<></th></lod<>	24	<lod< th=""><th>133</th><th>65</th><th>120</th><th><lod< th=""></lod<></th></lod<>	133	65	120	<lod< th=""></lod<>
DDH	62	60	3	22	<lod< th=""><th>135</th><th><lod< th=""><th>132</th><th>238</th></lod<></th></lod<>	135	<lod< th=""><th>132</th><th>238</th></lod<>	132	238
DDH	62.5	51	4	23	<lod< th=""><th>155</th><th>67</th><th>106</th><th><lod< th=""></lod<></th></lod<>	155	67	106	<lod< th=""></lod<>