

Exploration update:

Yeoval and Goodrich Drill Core, Gundagai North Burra Road Geochem

- Review of historical drill core from the Department of Regional NSW Core Library highlighted numerous zones of unsampled mineralisation from the Yeoval and Goodrich Prospects
- Two historical Yeoval drill holes (YA009 and YA010), drilled by a previous explorer in 2008, were logged by Godolphin and both drill holes contained unsampled visible chalcopyrite (copper sulphide) mineralisation occurring outside the existing JORC 2012 Mineral Resource Estimate
- Three diamond drill holes from the Goodrich Prospect (EL9243), south of Yeoval, also contained unsampled core and displayed evidence of favorable porphyry-style hydrothermal alteration comprising potassic feldspar infill quartz veins with visible copper sulphides in the unsampled core
- These new findings from the recently reviewed drill core significantly enhance exploration and resource potential across both projects
- At the Burra Road Project on the Gundagai North Project (EL8586), Godolphin soil and rock chip samples detected a 2.2km long pathfinder barium anomaly with associated elevated gold-in-soil results, planned follow up surface sampling along strike

Godolphin Resources Limited (ASX: GRL) ("**Godolphin**" or the "**Company**") is pleased to provide the following update on progress across several projects from its highly-prospective portfolio.

Most recently, the Company's geologists reviewed historic diamond drill core from the Yeoval and Goodrich Prospects which is stored at the NSW Department of Regional NSW Core Library in western Sydney. The process has outlined future exploration opportunities at both prospects.

Two historical holes from within the Yeoval Resource, YA009 and YA010, were relogged and contained significant intervals of copper mineralisation that were previously unsampled. As discovered by the Company when drilling the Yeoval South hole (GYDD002) earlier this year, copper mineralisation at Yeoval can be disseminated in broad zones or within very fine stringers (Refer ASX announcement 20 July 2022). Both YA009 and YA010 are outside of the project's existing Mineral Resource Estimate (**MRE**). The Company is confident that this finding has the potential to increase the existing MRE or identify new exploration targets at Yeoval.

Three diamond drill holes viewed from the Goodrich Prospect on EL9243, approximately 7kms southwest of Yeoval, also contained unsampled core. Godolphin geologists identified visible copper sulphide mineralisation as well as alteration assemblages confirming multiphase hydrothermal alteration near the historic Goodrich Mine workings within the unsampled core.

Management commentary:

Managing Director Ms Jeneta Owens said:

"The core library at Londonderry is a fantastic facility and provides explorers the opportunity to view core from previous explorers across NSW. Having the ability to view drill core from the Company's 100%-owned projects gives our geologists the ability to review the rock types, alteration and mineralisation styles which ultimately provides explorers with better project knowledge to assist in defining future exploration work

Godolphin Resources

ASX Code: GRL ABN: 13 633 779 950 A: Unit 13, 11-19 William Street, Orange NSW 2800 P: +61 2 6318 8144 E: info@godolphinresources.com.au www.godolphinresources.com.au

programs and drilling. Being able to identify favourable alteration and copper mineralised core in unsampled drill core is very exciting and we will be following up these findings.

The Company's geology team also spent time reviewing the Burra Road soil sampling results and applied trace element geochemical analysis to the data. This process is used to identify subtle changes in the soil chemistry and patterns within pathfinder elements. It is an important step in the exploration process and in this instance has identified encouraging signs of elevated gold and pathfinder barium, which will inform future work in the area. Barium is a pathfinder for numerous mineralisation styles including volcanic associated base metal mineralisation, hydrothermal gold and alkaline intrusive rare earths."

Godolphin also recently received rock chip and soil sample assay results from a program at the Burra Road Prospect on the Gundagai North (EL8586) tenement in southern NSW. The program was designed to test prospective Silurian-aged rock units along favourable structures located to the east of the reverse circulation drilling (RC) program from late 2021 at Emu and Mantons Prospects. Results identified highly anomalous gold and a 2.2km long +1000ppm barium soil anomaly associated with deformed and altered intermediate volcanics and volcaniclastics along a north trending magnetic high feature. Gold with elevated bismuth was identified in rock chips taken from previously untested historic workings.

Yeoval Prospect

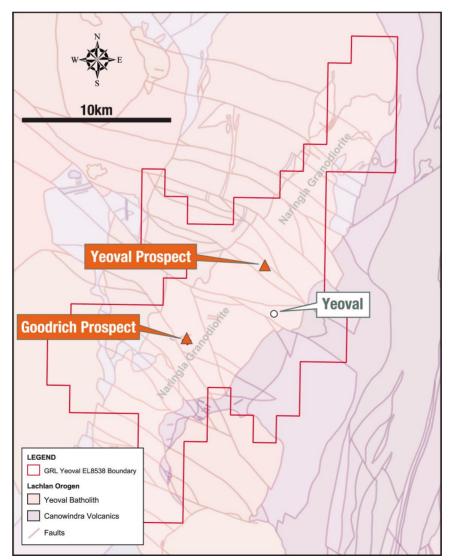


Figure 1: Location of Godolphin Resources Yeoval Prospect and Goodrich Prospects.

The Yeoval Prospect is located to the north of the township of Yeoval, approximately 50km south from the large regional centre of Dubbo in Central West NSW and has an existing JORC 2012 Mineral Resource Estimate of 12.8Mt at 0.38% copper, 0.14g/t gold, 2.2g/t silver & 120ppm molybdenum (refer Ardea Resources ASX announcement: 15 August 2019). Typical porphyry Cu-Au style mineralisation is present at Yeoval with disseminated and vein-hosted copper minerals chalcopyrite and bornite along with molybdenite.

The recent visit to the NSW Departmental Core Library by Godolphin's geologists to view diamond drill core from the Yeoval Prospect was aimed at understanding the geology, alteration and mineralisation style within the grade shell of the existing resource to assist in future drill targeting. During the visit several zones of unsampled HQ diameter drill core containing significant hydrothermal alteration, veining and sulphide mineralisation, including the copper mineral chalcopyrite, were identified.

As recent Godolphin drilling at the Yeoval South Prospect has shown, particularly in hole GYDD002, (refer GRL ASX announcement: 20 July 2022), significant porphyry style copper mineralisation can be intersected despite the hole being outside of the defined mineral resource envelope and indicates an increase to the potential size of the mineralised system. These findings in the Yeoval core will help identify future drill targets for the Company to expand the project's existing MRE.

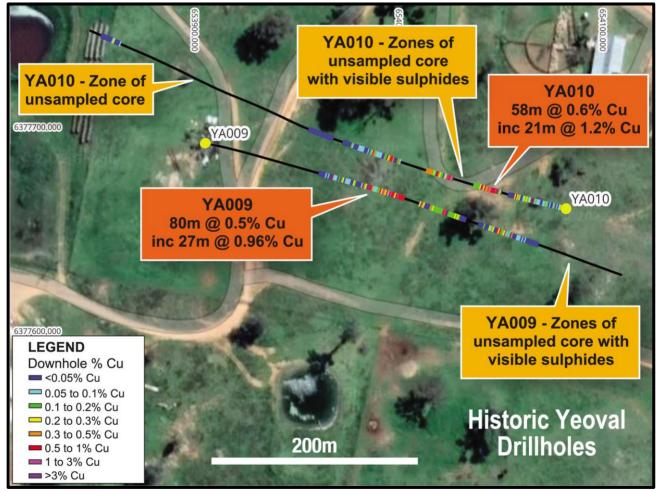


Figure 2: Location of YA009 and YA010 drill holes at the Yeoval Prospect. Copper values shown downhole in ppm

Goodrich Prospect

The Goodrich Prospect is situated on EL9243 within the larger Yeoval tenement, EL8538. Historic exploration was focused on vein-style quartz-magnetite-chalcopyrite (with gold and molybdenum) mineralisation that

occurred beneath the historic Goodrich Mine. The mine was worked during the mid-late 1800s and comprised a small central open cut pit and numerous shafts.

During the core library visit three diamond drill cores from the Goodrich Prospect, that were drilled in the early 2000s by previous explorers, were reviewed. These drill cores centred around the Goodrich Mine.

Alteration in GRDD002, drilled to the south-west under the historic open cut, contained zones of multiphase alteration veining, typical of porphyry deposits. Potential potassic feldspar infill veins were identified in unsampled and copper mineralised drill core towards the top of GRDD002. This is a different mineralisation style to the main stage mineralisation observed at the Goodrich prospect, thus increasing the exploration and resource potential of the area.

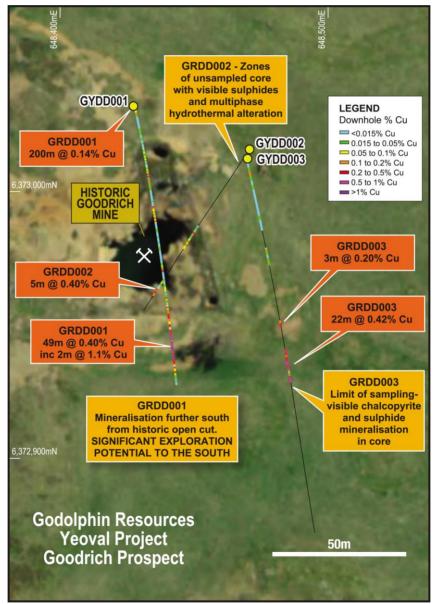


Figure 3: Plan view showing location of GRD001, GRD002 and GRD003 drill holes at the Goodrich Prospect

Three overprinting phases of important hydrothermal alteration styles were identified in the core; phyllic alteration comprising sericite, chlorite and albite; potassic alteration in the form of the k-feldspar infill veins and; inner propylitic alteration consisting of epidote and chlorite. GRDD003 contained zones of quartz vein-

hosted and disseminated sulphides including chalcopyrite in unsampled drill core particularly towards the end of the hole.

The overprinting styles of the different alteration assemblages is suggestive of a nearby porphyry system possibly at depth and provides an excellent future exploration target at the prospect.

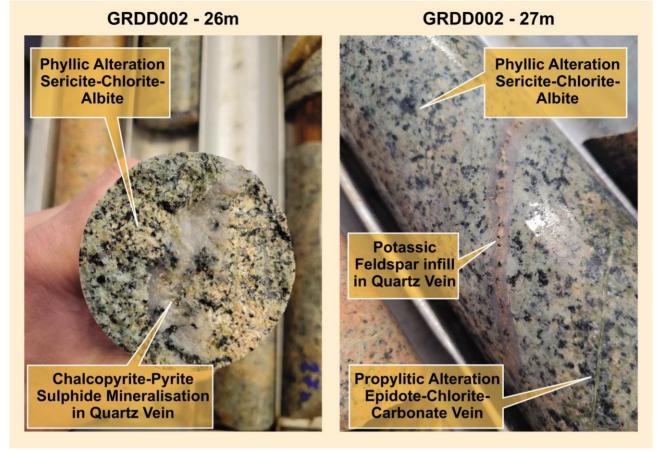


Figure 4: Photos of drill core from GRD002 showing A: quartz vein mineralisation, visual estimate of 0.2% copper mineralisation and B: multiphase alteration styles in unsampled core

Burra Road soils and rock chip program

The Company also received results from a soil and rock chip sampling program on the Gundagai North tenement (EL8586). The sampling program was designed to test surface mineralisation associated with the historic Oaks Mine area which reportedly produced gold values as high as 85g/t from a series of shafts (report reference GS1973/479). The program also tested faulted splays of prospective Ordovician Jindalee Group mafic volcanics within a deformed Silurian-aged rock package.

Assay results from the soils identified a coherent 2.2km long zone of +1000ppm barium as well as anomalous gold in the north of the sampling grid which remains open to the north. This zone of soil anomalism also coincides with a N-S trending magnetic feature (refer Figure 5). Recent geological mapping across the area identified a package of intensely deformed volcanics comprising meta-basaltic andesites, intermediate to felsic intrusives and volcaniclastics. Alteration across the mapped units comprised weak sericite-chlorite-silica.

The results from the rock chip sampling identified highly anomalous gold associated with quartz veins and gossanous volcanic rock within shallow historic workings. Two results recorded over 0.4g/t Au with the

highest result 0.5g/t Au, from area shallow pit wall adjacent to the historic Oaks Mine. Highly anomalous barium up to 1180ppm was also recorded in rock chip GRS03047.

These results are encouraging and indicate the area in the north of the soil grid and potentially even further north as the target for follow-up surface sampling initiatives for future target generation.

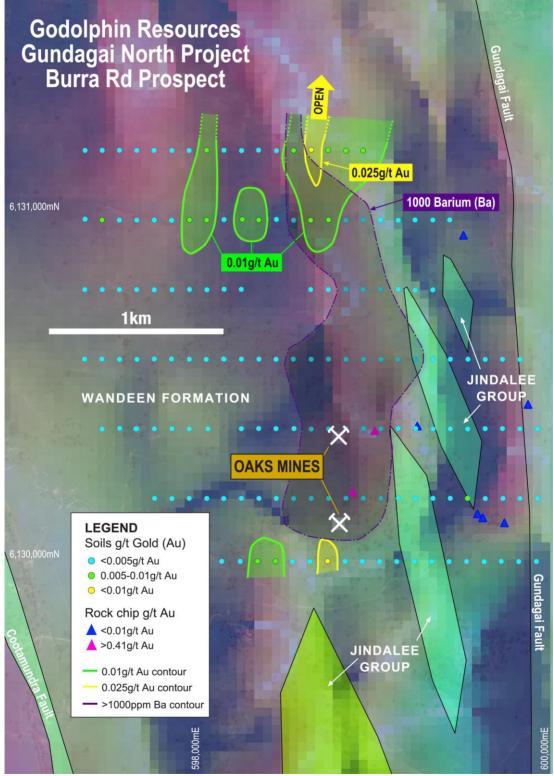


Figure 5: Burra Road Prospect soil and rock chip results with gold and barium contours. Seamless geology and NSW state-wide TMI imagery underlain

<<ENDS>>

This market announcement has been authorised for release to the market by the Board of Godolphin Resources Limited.

For further information regarding Godolphin, please visit <u>https://godolphinresources.com.au/</u> or contact:

Jeneta Owens Managing Director +61 417 344 658 jowens@godolphinresources.com.au

Released through: Henry Jordan, Six Degrees Investor Relations, +61 431 271 538

About Godolphin Resources

Godolphin Resources (ASX: GRL) is an ASX listed resources company, with 100% controlled Australian-based projects in the Lachlan Fold Belt ("LFB") NSW, a world-class gold-copper province. A strategic focus on critical minerals and green metals through ongoing exploration and development in central west NSW. Currently the Company's tenements cover 3,400km² of highly prospective ground focussed on the Lachlan Fold Belt, highly regarded providence for the discovery of REE, copper and gold deposits. Additional prospectivity attributes of GRL tenure include the McPhillamy's gold hosting Godolphin Fault and the Boda gold-copper hosting Molong Volcanic Belt.

Godolphin is exploring for REE, structurally hosted, epithermal gold and base-metal deposits and large, goldcopper Cadia style porphyry deposits and is pleased to announce a re-focus of exploration efforts for unlocking the potential of its East Lachlan tenement holdings, including increasing the mineral resource of its advanced Lewis Ponds Project. Reinvigoration of the exploration efforts across the tenement package is the key to discovery and represents a transformational stage for the Company and its shareholders.

COMPLIANCE STATEMENT The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Ms Jeneta Owens, a Competent Person who is a Member of the Australian Institute of Geoscientists. Ms Owens is the Managing Director, shareholder and full-time employee of Godolphin Resources Limited. Ms Owens has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Owens consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Information in this announcement is extracted from reports lodged as market announcements referred to above and available on the Company's website <u>www.godolphinresources.com.au</u>.

The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material 	Diamond Drilling • All drill holes mentioned in the body of this announcement were drilled prior to GRL ASX listing in 2019. Yeoval Drill holes (Auger Resources) • See Table 1 details in ARL ASX announcement 15 August 2019 for sampling information. Goodrich Drill holes (Malachite Resources) • GRDD01 - Entire hole sampled on 1m intervals. Each sample was cut in half, with one half sent for assay and the other half retained. • GRDD02 - Only selected Mineralised intervals sampled (generally 1m intervals). Each sample was cut in half and assayed, with unmineralized core not sampled and retained in full. • GRDD03 - RC Pre-collar sampled on 1m intervals and combined to form 3m composites. Each drill core sample was cut in half and assayed, with unmineralized core not sampled and retained in full. Soil Sampling • Due to the shallow nature of the regolith and outcrop at the site samples are collected from the "B" soil horizon at depths up to 40cm deep or just above bedrock in shallow sub crop areas. The samples are screened to -2mm and are free of organic matter. • In order to optimize the sample's ability to represent the mineralization, the samples are collected from the "B" horizon in order to mitigate the misrepresentation caused by transported material. • These sampling methods are standard industry methods and are believed to provide acceptably representative samples for the type of mineralisation encountered.
Drilling techniques	 brill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details. 	Rock Chip Sampling These samples are collected from outcrop, float, or other exposure. Samples are clear of organic matter. Yeoval Drill holes • See Table 1 details in ARL ASX announcement 15 August 2019 Goodrich Drill Holes • GRDD01-02 diamond drill via HQ from surface. • GRDD03 – RC Pre-collar to 48m then diamond drill HQ to end of hole.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 <u>Yeoval Drill Holes</u> See Table 1 details in ARL ASX announcement 15 August 2019 <u>Goodrich Drill Holes</u> Drill core recovery was determined by comparing the drilled length of each interval with the physical core in the tray. The drill depth and drill run length data is recorded on the core blocks by the drilling company and checked by geologists. Overall estimated recovery was high (100%).

Godolphin Resources

ASX Code: GRL ABN: 13 633 779 950 A: Unit 13, 11-19 William Street, Orange NSW 2800 P: +61 2 6318 8144 E: info@godolphinresources.com.au www.godolphinresources.com.au

Criteria	JORC Code explanation	Commentary
		 RC Pre-collars were sampled via a cyclone on 1m intervals. A 2-4kg sub-sample was collected off the cyclone after passing through a 1/8 riffle splitter. (taken fro Annual Reports)
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 <u>Diamond Drilling</u> The drill core from both Yeoval and Goodrich was logged by a qualified geologist. Logs includes detailed datasets for: lithology, alteration, mineralisation, vein structure, geotechnical logs, core recovery and magnetic susceptibility. The data is logged by a qualified geologist and is suitable for use in any future geological modelling, resource estimation, mining and/or metallurgical studies Soil Sampling Samples logged with recording of colour and potential lithology based on nearby outcropping rock (noted in "comments"). Samples are sieved (-2mm) in the field before the studies of the data studies of the da
Out constitues	En aller and the set of the	being placed into Calico bags.
Sub-sampling techniques and sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Yeoval Drill holes See Table 1 details in ARL ASX announcement 15 August 2019 Goodrich Drill Holes RC Pre-collar samples were sub-sampled from 1m bags and composited on 3m intervals. Samples were collected by spear method. Drill core Samples were cut in half, with one half sent for assay and the other half retained.
		Soil Sampling • Rock Chip Sampling • All rock chip samples (incl. Blanks) are crushed then pulverised in an LM5 pulveriser to a nominal 90% passing 75um. An approximately 100g pulp sub-sample is taken from the large sample and residual material stored.
		• A quartz flush (approximately 0.5 kilogram of white, medium grained sand) is put through the LM5 pulveriser prior to each new batch of samples. A quartz flush is also put through the pulveriser after each massive sulphide sample to ensure the bowl is clean prior to the next sample being processed. A selection of this pulverised quartz flush material is then analysed and reported by the lab to gauge if contamination may have been carried through from one sample to the next.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control 	Diamond Drilling • Yeoval Drill holes - See Table 1 details in ARL ASX announcement 15 August 2019 • Goodrich Drill holes - All samples sent to ALS Laboratories Orange. QA/QC procedures unknown. Soil and Rock Chip Sampling • Sample propagation and accounts in holes and unter through Ruropy Verities Laboratories Adelaide SA
	procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and	 Sample preparation and assaying is being conducted through Bureau Veritas Laboratories, Adelaide SA. Gold is determined by 40g fire assay fusion with ICP-AES analysis to 0.01ppm LLD. Other elements by mixed acid digestion followed by ICPOES or ICPMS analysis. Laboratory guality control standards (blanks, standards and duplicates) are inserted at a rate of 5 per 35 samples for ICP work.

Criteria	NNOUNCEMENT JORC Code explanation	Commentary
	established.	GRL also inserts blank and standards at a frequency of 1 per 20 samples
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Diamond Drilling • Yeoval Drill holes - See Table 1 details in ARL ASX announcement 15 August 2019 • Goodrich Drill Holes – Unknown Soil and Rock Chip Sampling • The lab routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. • GRL also inserted QAQC samples as mentioned above • All of the QAQC data has been statistically assessed. GRL has undertaken its own further review of QAQC results of the ALS routine standards through a database consultancy indicating acceptable QAQC standards. The results are considered to be acceptable and suitable for reporting. • All data and logging was recorded directly into field laptops. Visual validation as well as numerical validation was completed by two or more geologists. No adjustments to data have been undertaken
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Yeoval Drill holes - See Table 1 details in ARL ASX announcement 15 August 2019 Goodrich Drill Holes - DGPS Soil sample and rock chip location coordinates picked up using a handheld Garmin GPS with an accuracy of +/- 5m. Readings were taken in WGS84 and transformed into Map Grid of Australia 1994 Zone 55.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Yeoval Drill holes- See Table 1 details in ARL ASX announcement 15 August 2019 Goodrich Drill holes - Early-stage drilling program for the Goodrich Mine Prospect. Target is broad disseminated mineralisation and narrow quartz-magnetite-chalocpyrite lodes within an intrusive rock unit. The drill density in both areas deemed sufficient to test the target extension Soil Sampling – The program discussed within the body of this announcement was conducted at 400 x 100m spaced grid. Rock chip sampling was conducted randomly.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit 	 Yeoval Drill holes - See Table 1 details in ARL ASX announcement 15 August 2019 Goodrich Drill holes - The two holes discussed in the body of announcement, GRDD01-GRDD02, were drilled to target mineralisation beneath the historic workings and a such the drilling orientation was conducted to intersect interpreted mineralisation at a perpendicular angle. GRDD03 was testing potential disseminated mineralisation awa from the main workings.

Criteria	JORC Code explanation	Commentary
	type.	No significant bias is likely as a result of the pattern of intersection angles.
Sampla acquirity	The measures taken to ensure	
Sample security	• The measures taken to ensure	Diamond Drilling
	sample security.	Unknown for the historic Yeoval and Goodrich Drilling.
		Soil sampling
		• For this program care has been taken to have standard procedures for sample processing, These have been simple and industry standard to avoid sample bias.
		 All samples were collected and accounted for by GRL employees/consultants during drilling. All logging was done by GRL personnel. All samples were bagged into calico bags by GRL personnel.
		• The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received are routinely followed up and accounted for.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews performed to GRL's knowledge.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	Yeoval • The Yeoval project project is located surrounding the township of Yeoval in NSW, and has an elevation between 200 m and 500 m above sea-level. • The exploration rights to the project are owned 100% by the Godolphin Resources through the granted exploration licence EL8358 • The Yeoval prospect, on which the aforementioned resource was calculated lies on Exploration License number 8538 and is held by GRL. • The land is owned by Private land holders north of the township of Yeoval • There is no Joint venture or any other arrangements pertaining to this project, and also no native title claims over the area. • The Goodrich • The Goodrich project is located approximately 6km SW of the township of Yeoval in NSW, and has an elevation between 200 m and 500 m above sea-level. • The exploration rights to the project are owned 100% by the Godolphin Resources through the granted exploration licence EL9243 • The exploration project is located approximately 6km SW of the township of Yeoval in NSW, and has an elevation between 200 m and 500 m above sea-level. • The exploration rights to the project are owned 100% by the Godolphin Resources through the granted exploration licence EL9243 • The land is owned by Private land holders • The ris no Joint venture or any other arrangements pertaining to this project, and also no native title claims over the area. • The ris no Joint venture or any other arrangements pertaining to this project, and also no native title claims over the area. • The security deposit paid by GRL for E

<u>e</u>	X ANNOUNCEME	NT									
Criteria	JORC Code explanation	Commentary									
		Gundagai North (Burra Rd Prospect)									
		The Gundagai North tenement is located immediately north of the town of Gundagai in NSW.									
		The exploration rights to the project are owned 100% by the Godolphin Resources through the granted exploration licence EL8586									
		The land is owned by Private land holders									
		There is no Joint venture or any other arrangements pertaining to this project, and also no native title claims over the area.									
		• The security deposit paid by GRL for EL8586 is \$10,000.									
Exploration	Acknowledgment and	Yeoval									
done by other parties	appraisal of exploration by other parties.	• See ASX announcement by Ardea 15 August 2019, GRL 7 October 2021, 23 March 2022, 20 July 2022.									
pulloo	othor puritos.	<u>Goodrich</u>									
		Table below outlines previous exploration across EL9243 Tenement Company Start Date End Date Elements Units									
		Tenement Company Start Date End Date Elements Units ML811 Mr K Barker 1967 1988 Cu, Au, Mo 2									
		ML811 Peko-Wallsend/K Barker 1981 1984 Cu, Au, Mo 2									
		EPL491 Lynch Mining/K Barker 1988 1998 Cu, Au, Mo 2									
		ML811 Malachite Resources 1998 2002 Cu, Au, Mo 2									
		ML811 Augur Resources 2002 2012 Cu, Au, Mo 2									
	D										
Geology	Deposit type, geological setting and style of	Yeoval & Goodrich									
	mineralization.	Geology									
		Both EL8538 and EL9243 cover a large portion of the Early Devonian Yeoval Batholith including felsic to mafic intrusives of the Yeoval Intrusive Complex.									
		The Yeoval Complex is strongly fractionated and comprised of various intermediate intrusive lithologies - granite, quartz monzodiorite, quartz diorite, microgranodiorite, granodiorite									
		diorite and gabbro (Pogson et al 1998). The more fractioned intermediate phases are highly prospective for porphyry copper - molybdenum ± gold mineralisation.									
		This Yeoval intrusive complex formed during a Late Silurian to Early Devonian melting and rifting event that split the Ordovician to Early Silurian Macquarie Arc. Its chemistry is									
		shoshonitic, in common with the Ordovician volcanic rocks that host the Cadia and Northparkes porphyry copper-gold deposits, and a similar mantle source and mineral potential is inferred. The south-eastern portion of the licence area hosts the Silurian aged Canowindra Volcanics - garnetiferous quartz-feldspar-cordierite tuffs, ashstone and breccias. A									
		core of Ordovician sandstone, siltstone and minor limestone from the Kabadah Formation found within the Silurian sediments and volcanics. This area is considered prospectiv									
		for low sulphidation Au-Ag mineralisation similar in style to the Ardea Mt Aubrey gold deposit to the south-west of the area.									
		Emplacement of intrusives and extrusives in the Early Devonian which are related to the Boggy Plain Supersuite have given rise to intrusive related mineralisation.									
		Numerous copper-gold occurrences are known in the Yeoval Complex. Mineralisation ranges from disseminated chalcopyrite-gold within altered granodiorite (Yeoval, Yeova									
		South) to quartz-magnetite-chalcopyrite veining within structures inferred within the granodiorite, at the Goodrich Mine. The style of the mineral occurrences is indicative of									
		porphyry copper-gold setting. Minor occurrences of copper ± gold mineralisation is present within the microgranite and granite of the Yeoval Complex. Minor molybdenum i reported at the Martins Reef Prospect in the south-west of the licence area. Scattered copper-gold prospects also occur within the Silurian and Devonian sequences east of the									
		Yeoval Batholith.									

Criteria	SX ANNOUNCEMI JORC Code explanation	Commentary									
			Mineralisation hosted within the Yeoval complex is centred in and around quartz monzonite porphyry complexes which intruded the volcanic centres, composing of pipes, dykes								
		Gundagai North	<u>Gundagai North</u>								
		Burra Road									
		Gilmore Suture and fault systems are be Frampton volcanics is in the eastern hal These tow structure	the Mooney Moor lieved to have act in the western sed f of the licence an s combine to mak	ey Fault System ed together as a ction of the licence id it too seems to e EL8586 very p	but in the immedia major shear and the se shows two struc b have a congrega rospective for struc	ate area of his system r tures, and a tion of work cturally con	EL 8586 the makes EL 85 a concentrati kings associ	Gundagai and C 586 highly prospe on of historic gol ated with it in the	n appear to be controlled by two NNW-trending fault systems Cootamundra faults play a more direct role. These two sub-pa ective for structurally controlled gold and base metal deposits Id workings seem to occur along this structure. The Gundagai e Wandeen formation and also further east of the Gundagai		
Drill hole Information	A summary of all informatio material to the understandin		s drill hole informa	tion pertaining to	o this ASX release:						
internation	of the exploration result		HOLE_ID	EASTING	NORTHING	RL	EOH	AZIMUTH	DIP		
	including a tabulation of th	YEOVAL	YA009	653792	6377508	386.2	316.9	101.3	-50		
	following information for a	/ YEOVAL	YA010	653969.4	6377475	385.9	401.3	282.8	-55		
	Material drill holes:	GOODRICH	GRDD001	648428	6373032	458.0	209.8	167.5	-60		
		GOODRICH	GRDD002	648471	6373016	458.0	143.8	212.5	-60		
		GOODRICH	GRDD003	648470	6373012	458.0	254.6	167.5	-55		
Data	In reporting Exploratio	7 Yeoval									
aggregation methods	Results, weighting averagin techniques, maximum and/c	,	See Table 1	details in ARL A	SX announcement	15 August	2019				
	minimum grade truncation (eg cutting of high grades and cut-off grades are usuall	Goodrich	No grade ag	gregation, weigh	ting, or cut-off met	nods were u	used for this	announcement.			
	Material and should b stated.										
	Where aggregate intercept incorporate short lengths high-grade results and longe	f									
	lengths of low grade results the procedure used for suc	,									
	aggregation should be state and some typical examples o	f									
	such aggregations should b shown in detail.	9									

Criteria	JORC Code explanation	Commentary
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Yeoval • The Yeoval holes were drilled at an average of -55° declination • The mineralisation at the Yeoval Prospect is modelled as being near vertical. Goodrich • The Goodrich holes were drilled at an average of -60° declination • Mineralisation at the Goodrich Prospect is interpreted to be hosted in narrow steeply dipping lodes and disseminated throughout the host granodiorite.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Diagrams can be found in the body of the announcement. Diagrams for the Yeoval Resource can be found in the Ardea Resources Ltd ASX release 15 August 2019
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Results. 	 All results of Ardea's and Godolphin's exploration results have been reported in a previous ASX releases For the Yeoval Resource see Ardea Resources Lt d ASX release 15 August 2019
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Yeoval • See Ardea Resources Lt d ASX release 15 August 2019 and GRL 7 October 2021 and 23 March 2022. Goodrich • Information for the Goodrich drilling comes from historic annual reporting and internal drilling databases. Burra Road • Not applicable at this early stage of exploration.

Criteria	JORC Code explanation	Commentary
Further work	• The nature and scale of planned further work (eg tests	
	for lateral extensions or depth extensions or large-scale	
	step-out drilling).	

Appendix 2: Table of Drill and soil sample results discussed in this ASX release. (Note: Only drillhole data from YA009, YA010, GRDD01, GRDD02 and GRDD03 displayed, not all the elements are shown but are available upon request)

Yeoval Prospect (YA009-YA010)

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
YA009	DDH	90	91	0.1	0.005	66	0.5
YA009	DDH	91	92	0.1	0.005	130	0.5
YA009	DDH	92	93	0.1	0.01	325	0.5
YA009	DDH	93	94	0.1	0.005	226	0.5
YA009	DDH	94	95	0.1	0.005	309	10
YA009	DDH	95	96	0.1	0.01	579	20
YA009	DDH	96	97	0.1	0.005	81	0.5
YA009	DDH	97	98	0.1	0.03	502	0.5
YA009	DDH	98	99	0.1	0.01	49	0.5
YA009	DDH	99	100	0.1	0.005	59	0.5
YA009	DDH	100	101	9	0.06	5720	30
YA009	DDH	101	102	0.1	0.005	767	30
YA009	DDH	102	103	0.1	0.005	826	10
YA009	DDH	103	104	0.1	0.01	594	0.5
YA009	DDH	104	105	0.1	0.005	288	0.5
YA009	DDH	105	106	0.1	0.01	1200	0.5
YA009	DDH	106	107	0.1	0.01	371	20
YA009	DDH	107	108	0.1	0.005	1050	0.5
YA009	DDH	108	109	0.1	0.01	2720	20
YA009	DDH	109	110	0.1	0.005	81	0.5
YA009	DDH	110	111	0.1	0.005	592	0.5
YA009	DDH	111	112	0.1	0.01	511	0.5
YA009	DDH	112	113	0.1	0.005	774	0.5
YA009	DDH	113	114	0.1	0.01	542	0.5
YA009	DDH	114	115	0.1	0.005	205	0.5
YA009	DDH	115	116	0.1	0.005	77	0.5
YA009	DDH	116	117	0.1	0.005	2070	0.5
YA009	DDH	117	118	0.1	0.01	1100	30
YA009	DDH	118	119	0.1	0.005	218	0.5
YA009	DDH	119	120	0.1	0.005	78	0.5
YA009	DDH	120	121	0.1	0.01	57	0.5
YA009	DDH	121	122	0.1	0.005	57	0.5
YA009	DDH	122	123	0.1	0.01	908	40
YA009	DDH	123	124	1	0.06	6270	260
YA009	DDH	124	125	0.1	0.01	1180	0.5
YA009	DDH	125	126	0.1	0.03	2970	130
YA009	DDH	126	127	5	0.43	39000	50
YA009	DDH	127	128	1	0.17	6510	140
YA009	DDH	128	129	5	0.08	32100	90
YA009	DDH	129	130	7	0.06	9070	60
YA009	DDH	130	131	0.1	0.03	3780	20

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
YA009	DDH	131	132	0.1	0.01	673	0.5
YA009	DDH	132	133	0.1	0.005	507	0.5
YA009	DDH	133	134	0.1	0.01	862	40
YA009	DDH	134	135	0.1	0.03	1070	0.5
YA009	DDH	135	136	0.1	0.06	1970	0.5
YA009	DDH	136	137	1	0.09	9200	20
YA009	DDH	137	138	0.1	0.14	2530	10
YA009	DDH	138	139	5	1.41	13200	160
YA009	DDH	139	140	0.1	0.43	3020	0.5
YA009	DDH	140	141	0.1	0.07	2770	70
YA009	DDH	141	142	1	0.17	8240	210
YA009	DDH	142	143	0.1	0.24	540	0.5
YA009	DDH	143	144	6	0.27	9930	90
YA009	DDH	144	145	14	0.34	22900	260
YA009	DDH	145	146	3	0.22	5900	90
YA009	DDH	146	147	2	0.07	6600	40
YA009	DDH	147	148	0.1	0.04	2850	110
YA009	DDH	148	149	4	0.41	5150	50
YA009	DDH	149	150	27	0.64	24000	2810
YA009	DDH	150	151	16	0.27	9500	110
YA009	DDH	166	167	7	0.05	2690	220
YA009	DDH	167	168	23	0.15	35200	2040
YA009	DDH	168	169	0.1	0.005	3340	150
YA009	DDH	169	170	0.1	0.01	2510	40
YA009	DDH	170	171	0.1	0.02	301	20
YA009	DDH	171	172	0.1	0.005	66	0.5
YA009	DDH	172	173	0.1	0.005	67	0.5
YA009	DDH	173	174	0.1	0.01	61	0.5
YA009	DDH	174	175	0.1	0.01	3080	40
YA009	DDH	175	176	0.1	0.01	1480	0.5
YA009	DDH	176	177	0.1	0.01	2630	40
YA009	DDH	177	178	0.1	0.05	1300	130
YA009	DDH	178	179	0.1	0.005	1610	110
YA009	DDH	179	180	0.1	0.005	1970	30
YA009	DDH	180	181	0.1	0.05	1070	220
YA009	DDH	181	182	0.1	0.01	1270	50
YA009	DDH	182	183	0.1	0.01	1580	310
YA009	DDH	183	184	0.1	0.02	1380	90
YA009	DDH	184	185	3	0.06	9390	770
YA009	DDH	185	186	7	0.19	22700	1080
YA009	DDH	186	187	4	0.07	5900	1090
YA009	DDH	187	188	0.1	0.005	481	80
YA009	DDH	188	189	0.1	0.04	1080	490
YA009	DDH	189	190	0.1	0.04	1200	20
YA009	DDH	190	191	0.1	0.03	1360	0.5

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
YA009	DDH	191	192	0.1	0.03	1140	190
YA009	DDH	192	193	0.1	0.03	1040	60
YA009	DDH	193	194	2	0.04	2970	980
YA009	DDH	194	195	0.1	0.005	1100	70
YA009	DDH	195	196	2	0.05	2780	370
YA009	DDH	196	197	0.1	0.02	1200	50
YA009	DDH	197	198	0.1	0.005	59	0.5
YA009	DDH	211	212	0.1	0.02	284	20
YA009	DDH	212	213	0.1	0.005	306	10
YA009	DDH	213	214	0.1	0.005	443	0.5
YA009	DDH	214	215	0.1	0.005	189	0.5
YA009	DDH	215	216	0.1	0.02	1680	30
YA009	DDH	216	217	0.1	0.005	54	0.5
YA009	DDH	217	218	0.1	0.005	71	0.5
YA009	DDH	218	219	0.1	0.005	350	10
YA009	DDH	219	220	2	0.005	2680	100
YA009	DDH	220	221	0.1	0.005	1000	80
YA009	DDH	221	222	0.1	0.04	1200	0.5
YA009	DDH	222	223	3	0.03	2910	10
YA009	DDH	223	224	0.1	0.005	134	0.5
YA009	DDH	224	225	0.1	0.005	51	0.5
YA009	DDH	225	226	2	0.06	7580	140
YA009	DDH	226	227	2	0.07	2440	50
YA009	DDH	227	228	4	0.02	5420	120
YA009	DDH	228	229	0.1	0.005	1070	30
YA009	DDH	229	230	0.1	0.03	1620	30
YA009	DDH	230	231	0.1	0.03	2340	40
YA009	DDH	231	232	12	0.05	27700	40
YA009	DDH	232	233	0.1	0.005	724	10
YA009	DDH	233	234	0.1	0.005	1260	10
YA009	DDH	234	235	0.1	0.005	636	0.5
YA009	DDH	235	236	0.1	0.005	497	0.5
YA009	DDH	236	237	2	0.16	3990	120
YA009	DDH	237	238	0.1	0.005	187	70
YA009	DDH	238	239	0.1	0.005	111	0.5
YA009	DDH	239	240	0.1	0.005	184	0.5
YA009	DDH	240	241	0.1	0.005	702	10
YA009	DDH	241	242	0.1	0.005	824	0.5
YA009	DDH	242	243	0.1	0.005	808	0.5
YA009	DDH	243	244	0.1	0.005	407	0.5
YA009	DDH	244	245	0.1	0.005	617	0.5
YA009	DDH	245	246	0.1	0.005	221	0.5
YA009	DDH	246	247	0.1	0.005	845	0.5
YA009	DDH	247	248	0.1	0.005	377	0.5
YA009	DDH	248	249	0.1	0.005	256	0.5

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
YA009	DDH	249	250	0.1	0.005	198	0.5
YA009	DDH	250	251	0.1	0.005	243	0.5
YA009	DDH	251	252	0.1	0.005	164	0.5
YA009	DDH	252	253	0.1	0.005	159	0.5
YA010	DDH	0	1	12.4	0.005	851	28
YA010	DDH	1	2	0.5	0.005	878	4
YA010	DDH	2	3	0.5	0.01	1530	4
YA010	DDH	3	4	0.4	0.005	1500	2
YA010	DDH	4	5	0.3	0.005	1680	2
YA010	DDH	5	6	0.8	0.005	784	2
YA010	DDH	6	7	0.5	0.005	1140	1
YA010	DDH	7	8	0.4	0.005	2170	7
YA010	DDH	8	9	0.5	0.005	813	23
YA010	DDH	9	10	0.3	0.005	142	1
YA010	DDH	10	11	0.4	0.005	734	53
YA010	DDH	11	12	0.2	0.005	105	9
YA010	DDH	12	13	0.7	0.005	1170	16
YA010	DDH	13	14	0.5	0.005	858	18
YA010	DDH	14	15	0.3	0.005	435	61
YA010	DDH	15	16	0.3	0.005	321	1
YA010	DDH	16	17	0.7	0.005	633	3
YA010	DDH	17	18	0.4	0.005	423	38
YA010	DDH	18	19	0.4	0.01	1310	26
YA010	DDH	19	20	0.4	0.005	615	3
YA010	DDH	20	21	0.3	0.005	1220	33
YA010	DDH	21	22	0.1	0.005	574	4
YA010	DDH	22	23	0.3	0.005	838	6
YA010	DDH	23	24	0.1	0.005	65	19
YA010	DDH	24	25	0.4	0.005	91	107
YA010	DDH	25	26	0.3	0.005	691	197
YA010	DDH	26	27	0.4	0.005	654	2
YA010	DDH	27	28	0.1	0.005	650	2
YA010	DDH	28	29	0.6	0.005	1770	52
YA010	DDH	29	30	0.2	0.005	757	11
YA010	DDH	30	31	0.8	0.005	9710	356
YA010	DDH	31	32	0.3	0.005	262	191
YA010	DDH	32	33	0.1	0.005	144	2
YA010	DDH	33	34	0.2	0.005	2730	14
YA010	DDH	34	35	0.2	0.005	900	1
YA010	DDH	35	36	0.4	0.005	1240	52
YA010	DDH	36	37	0.3	0.005	2150	25
YA010	DDH	37	38	0.3	0.005	1790	3
YA010	DDH	38	39	0.2	0.005	2110	4
YA010	DDH	39	40	0.2	0.005	601	2
YA010	DDH	40	41	0.1	0.005	83	9

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
YA010	DDH	41	42	0.1	0.005	234	14
YA010	DDH	42	43	0.5	0.03	2410	18
YA010	DDH	43	44	0.4	0.02	1330	3
YA010	DDH	44	45	0.2	0.02	2140	65
YA010	DDH	45	46	0.7	0.04	5420	178
YA010	DDH	46	47	0.3	0.01	2550	29
YA010	DDH	47	48	0.1	0.005	91	4
YA010	DDH	58	59	0.1	0.005	361	179
YA010	DDH	59	60	0.5	0.005	2260	251
YA010	DDH	60	61	0.1	0.005	1050	52
YA010	DDH	61	62	69.9	0.28	53000	52
YA010	DDH	62	63	3.7	0.04	8210	156
YA010	DDH	63	64	1.9	0.01	12200	115
YA010	DDH	64	65	1.2	0.05	9830	424
YA010	DDH	65	66	0.9	0.01	9420	186
YA010	DDH	66	67	1.9	0.14	8010	248
YA010	DDH	67	68	2.5	0.005	11000	337
YA010	DDH	68	69	2	0.005	4920	51
YA010	DDH	69	70	8.2	0.03	16500	137
YA010	DDH	70	71	1	0.005	3630	109
YA010	DDH	71	72	1.1	0.05	4630	106
YA010	DDH	72	73	0.9	0.005	5630	108
YA010	DDH	73	74	1.4	0.005	2410	70
YA010	DDH	74	75	16.1	0.03	46500	93
YA010	DDH	75	76	3.8	0.005	9040	314
YA010	DDH	76	77	0.8	0.005	2640	36
YA010	DDH	77	78	0.4	0.005	1430	2
YA010	DDH	100	101	0.1	0.005	187	2
YA010	DDH	101	102	1.4	0.005	4680	273
YA010	DDH	102	103	18.9	0.04	13200	284
YA010	DDH	103	104	1.6	0.005	8730	331
YA010	DDH	104	105	1.7	0.005	15400	189
YA010	DDH	105	106	2.8	0.005	19100	362
YA010	DDH	106	107	0.9	0.005	3000	288
YA010	DDH	107	108	0.3	0.005	829	9
YA010	DDH	108	109	0.1	0.005	101	4
YA010	DDH	109	110	0.4	0.005	1380	3
YA010	DDH	110	111	0.4	0.005	1360	33
YA010	DDH	111	112	1.1	0.05	2910	39
YA010	DDH	112	113	1	0.005	3690	10
YA010	DDH	113	114	0.9	0.005	5480	209
YA010	DDH	114	115	0.1	0.005	116	2
YA010	DDH	115	116	0.2	0.01	1140	73
YA010	DDH	116	117	0.6	0.005	2060	23
YA010	DDH	117	118	0.5	0.005	1670	7

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
YA010	DDH	118	119	1	0.005	3610	46
YA010	DDH	145	146	1	0.005	777	14
YA010	DDH	146	147	1.4	0.005	3010	11
YA010	DDH	147	148	0.3	0.005	1780	21
YA010	DDH	148	149	0.2	0.005	272	2
YA010	DDH	149	150	0.1	0.005	491	1
YA010	DDH	150	151	0.1	0.005	346	1
YA010	DDH	151	152	0.6	0.07	4910	21
YA010	DDH	152	153	0.5	0.02	5220	54
YA010	DDH	153	154	0.9	0.16	7380	35
YA010	DDH	154	155	0.4	0.04	4120	4
YA010	DDH	155	156	0.3	0.005	2190	3
YA010	DDH	156	157	0.1	0.005	371	11
YA010	DDH	157	158	0.2	0.005	1610	7
YA010	DDH	158	159	0.2	0.005	1020	23
YA010	DDH	159	160	0.1	0.005	344	10
YA010	DDH	160	161	0.1	0.005	178	22
YA010	DDH	161	162	0.2	0.005	829	1
YA010	DDH	162	163	0.2	0.005	635	5
YA010	DDH	166	167	0.3	0.005	1490	5
YA010	DDH	167	168	1	0.005	4260	2
YA010	DDH	168	169	1.8	0.05	5310	33
YA010	DDH	169	170	0.3	0.005	894	25
YA010	DDH	170	171	0.3	0.005	1200	56
YA010	DDH	171	172	0.1	0.005	171	1
YA010	DDH	172	173	0.3	0.005	911	5
YA010	DDH	173	174	0.1	0.005	126	14
YA010	DDH	174	175	0.2	0.005	341	26
YA010	DDH	175	176	0.1	0.005	161	3
YA010	DDH	176	177	0.2	0.005	676	4
YA010	DDH	177	178	0.4	0.005	663	20
YA010	DDH	178	179	0.2	0.005	545	7
YA010	DDH	179	180	0.3	0.005	971	12
YA010	DDH	180	181	0.1	0.005	576	305
YA010	DDH	181	182	0.1	0.005	212	169
YA010	DDH	182	183	0.1	0.005	246	39
YA010	DDH	183	184	0.1	0.75	148	132
YA010	DDH	184	185	0.2	0.01	321	163
YA010	DDH	185	186	0.1	0.03	517	200
YA010	DDH	186	187	0.1	0.02	1130	31
YA010	DDH	187	188	0.1	0.005	28	3
YA010	DDH	188	189	0.2	0.005	141	2
YA010	DDH	189	190	0.2	0.005	32	2
YA010	DDH	202	203	0.2	0.005	354	3
YA010	DDH	203	204	0.2	0.005	330	1

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
YA010	DDH	204	205	0.3	0.005	498	4
YA010	DDH	205	206	0.4	0.005	398	9
YA010	DDH	206	207	0.1	0.005	198	12
YA010	DDH	207	208	0.1	0.005	34	2
YA010	DDH	208	209	0.5	0.005	95	2
YA010	DDH	209	210	0.3	0.005	256	9
YA010	DDH	210	211	0.5	0.005	414	22
YA010	DDH	211	212	0.2	0.005	203	4
YA010	DDH	212	213	0.3	0.005	187	2
YA010	DDH	213	214	0.2	0.005	105	2
YA010	DDH	214	215	0.2	0.005	216	2
YA010	DDH	215	216	0.2	0.005	177	2
YA010	DDH	216	217	0.3	0.005	409	2
YA010	DDH	217	218	0.2	0.005	268	2
YA010	DDH	218	219	0.5	0.01	119	1
YA010	DDH	380	381	0.5	0.01	508	7
YA010	DDH	381	382	0.7	0.01	319	2
YA010	DDH	382	383	0.2	0.01	301	1
YA010	DDH	383	384	0.2	0.01	216	2
YA010	DDH	384	385	0.3	0.005	36	1
YA010	DDH	385	386	0.6	0.005	2580	85
YA010	DDH	386	387	0.2	0.01	758	35
YA010	DDH	387	388	0.1	0.005	61	1
YA010	DDH	388	389	0.2	0.005	109	2
YA010	DDH	389	390	0.2	0.01	393	5
YA010	DDH	390	391	0.1	0.005	71	2
YA010	DDH	391	392	0.4	0.01	293	2

Goodrich Prospect (GRDD01-03)

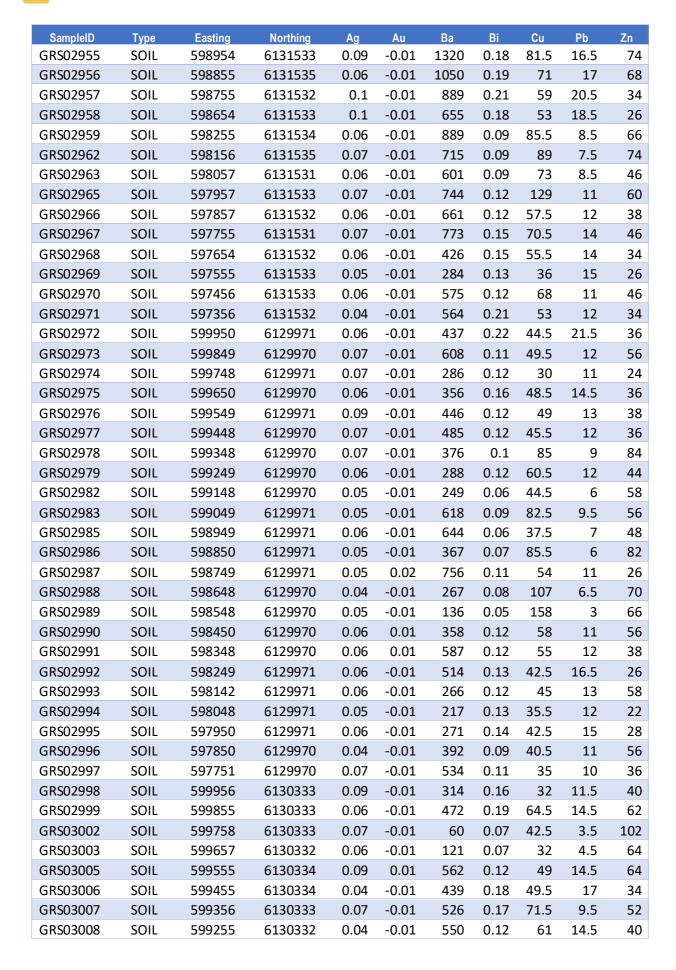
0 1 10	-	-	-			•	
SampleID GRDD01	Type DDH	From_m 2.7	To_m 5.7	Ag_ppm -1	Au_ppm -0.01	Cu_ppm 635	Mo_ppm -5
GRDD01 GRDD01	DDH	5.7	6	-1	-0.01	1080	8
GRDD01 GRDD01	DDH	6	7	-1	-0.01	1080	6
GRDD01	DDH	7	8	-1	-0.01	315	-5
GRDD01	DDH	8	9	-1	-0.01	343	7
GRDD01	DDH	9	10	-1	-0.01	115	5
GRDD01	DDH	10	11	-1	-0.01	58	-5
GRDD01	DDH	11	12	-1	-0.01	77	-5
GRDD01	DDH	12	13	-1	-0.01	61	9
GRDD01	DDH	13	16	-1	-0.01	40	6
GRDD01	DDH	16	17	-1	-0.01	54	-5
GRDD01	DDH	17	18	-1	-0.01	129	-5
GRDD01	DDH	18	19	-1	-0.01	231	9
GRDD01	DDH	19	20	-1	-0.01	192	7
GRDD01	DDH	20	21	-1	-0.01	189	10
GRDD01	DDH	21	22	-1	-0.01	319	-5
GRDD01	DDH	22	23	-1	-0.01	159	6
GRDD01	DDH	23	24	-1	-0.01	113	-5
GRDD01	DDH	24	25	-1	-0.01	69	-5
GRDD01	DDH	25	26	-1	-0.01	199	-5
GRDD01	DDH	26	27	-1	0.04	455	6
GRDD01	DDH	27	28	-1	-0.01	65	-5
GRDD01	DDH	28	29	-1	-0.01	43	-5
GRDD01	DDH	29	30	-1	-0.01	346	-5
GRDD01	DDH	30	31	-1	-0.01	87	6
GRDD01	DDH	31	32	-1	-0.01	58	5
GRDD01	DDH	32	33	-1	-0.01	53	-5
GRDD01	DDH	33	34	-1	0.04	820	-5
GRDD01	DDH	34	35	-1	-0.01	251	6
GRDD01	DDH	35	36		-0.01	130	-5
GRDD01	DDH	36	37	-1	-0.01	576	7
GRDD01	DDH	37	38	-1	0.03	460	7
GRDD01	DDH	38	39		-0.01	264	6
GRDD01	DDH	39	40	-1	-0.01	527	-5
GRDD01	DDH	40	41	-1	-0.01	490	5
GRDD01 GRDD01	DDH	40	42	-1	0.01	906	6
GRDD01	DDH	41	43	-1	-0.01	230	-5
GRDD01 GRDD01	DDH	42	44	-1	-0.01	125	-5
GRDD01 GRDD01	DDH	43	44	-1	-0.01	419	-5
GRDD01 GRDD01	DDH	44	45	-1	-0.01	102	-5
GRDD01 GRDD01	DDH	45	40	-1	-0.01		-5
			47	-1		555	
GRDD01	DDH	47			-0.01	95	6
GRDD01	DDH	48	49	-1	-0.01	180	5

	DDH	49	50	1	-0.01	0.20	_
GRDD01	ррц		50	-1	-0.01	928	-5
	DDH	50	51	-1	-0.01	278	6
GRDD01	DDH	51	52	-1	-0.01	729	7
GRDD01	DDH	52	53	1	0.09	3330	9
GRDD01	DDH	53	54	1	0.11	1900	10
GRDD01	DDH	54	55	7	1.14	12200	8
GRDD01	DDH	55	56	-1	0.08	1400	6
GRDD01	DDH	56	57	-1	-0.01	274	-5
GRDD01	DDH	57	58	-1	-0.01	401	12
GRDD01	DDH	58	59	-1	-0.01	1170	6
GRDD01	DDH	59	60	1	-0.01	1560	8
GRDD01	DDH	60	61	-1	-0.01	438	5
GRDD01	DDH	61	62	-1	-0.01	220	-5
GRDD01	DDH	62	63	-1	-0.01	157	6
GRDD01	DDH	63	64	-1	-0.01	1150	7
GRDD01	DDH	64	65	-1	-0.01	169	5
GRDD01	DDH	65	66	-1	-0.01	27	-5
GRDD01	DDH	66	67	-1	-0.01	41	6
GRDD01	DDH	67	68	-1	-0.01	23	6
GRDD01	DDH	68	69	-1	-0.01	25	5
GRDD01	DDH	69	70	-1	-0.01	57	-5
GRDD01	DDH	70	71	-1	-0.01	96	7
GRDD01	DDH	71	72	-1	-0.01	73	6
GRDD01	DDH	72	73	-1	-0.01	127	10
GRDD01	DDH	73	74	-1	-0.01	242	9
GRDD01	DDH	74	75	-1	-0.01	66	7
GRDD01	DDH	75	76	-1	-0.01	94	5
GRDD01	DDH	76	77	-1	-0.01	65	10
GRDD01	DDH	77	78	1	0.12	2940	12
GRDD01	DDH	78	79	-1	0.07	1160	10
GRDD01	DDH	79	80	-1	-0.01	709	10
GRDD01	DDH	80	81	-1	-0.01	758	15
GRDD01	DDH	81	82	-1	-0.01	1770	7
GRDD01	DDH	82	83	-1	0.08	521	20
GRDD01	DDH	83	84	-1	0.02	340	30
GRDD01	DDH	84	85	-1	-0.01	785	90
GRDD01	DDH	85	86	-1	0.04	1080	11
GRDD01	DDH	86	87	-1	0.02	1400	15
GRDD01	DDH	87	88	-1	0.02	972	29
GRDD01	DDH	88	89	2	0.03	9670	292
GRDD01	DDH	89	90	-1	-0.01	674	5
GRDD01	DDH	90	91	-1	-0.01	135	-5
GRDD01	DDH	91	92	-1	0.02	62	5
GRDD01	DDH	92	93	-1	-0.01	106	9
GRDD01	DDH	93	94	-1	0.06	70	6

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
GRDD01	DDH	94	95	-1	0.03	167	5
GRDD01	DDH	95	96	-1	0.01	242	6
GRDD01	DDH	96	97	-1	-0.01	256	0.9
GRDD01	DDH	97	97.5	-1	0.01	92	6
GRDD01	DDH	97.5	99.4			0	
GRDD01	DDH	99.4	100	-1	-0.01	124	-5
GRDD01	DDH	100	101	1	-0.01	350	7
GRDD01	DDH	101	102	-1	-0.01	49	6
GRDD01	DDH	102	103	-1	-0.01	57	5
GRDD01	DDH	103	104	-1	-0.01	101	6
GRDD01	DDH	104	105	-1	-0.01	168	5
GRDD01	DDH	105	106	-1	-0.01	80	6
GRDD01	DDH	106	107	-1	-0.01	53	5
GRDD01	DDH	107	108	-1	-0.01	102	5
GRDD01	DDH	108	109	-1	-0.01	365	8
GRDD01	DDH	109	110	-1	0.06	1490	11
GRDD01	DDH	110	111	-1	-0.01	260	8
GRDD01	DDH	111	112	-1	-0.01	87	5
GRDD01	DDH	112	113	-1	-0.01	61	-5
GRDD01	DDH	113	114	-1	-0.01	137	6
GRDD01	DDH	114	115	-1	-0.01	110	6
GRDD01	DDH	115	116	-1	-0.01	117	-5
GRDD01	DDH	116	117	-1	-0.01	138	6
GRDD01	DDH	117	118	-1	-0.01	68	6
GRDD01	DDH	118	119	-1	-0.01	51	6
GRDD01	DDH	119	120	-1	-0.01	95	9
GRDD01	DDH	120	121	-1	-0.01	278	39
GRDD01	DDH	121	122	-1	-0.01	383	42
GRDD01	DDH	122	123	-1	-0.01	535	26
GRDD01	DDH	123	124	-1	-0.01	232	25
GRDD01	DDH	124	125	-1	-0.01	281	18
GRDD01	DDH	125	126	1	0.19	2630	11
GRDD01	DDH	126	127	2	0.31	3300	20
GRDD01	DDH	127	128	-1	-0.01	141	8
GRDD01	DDH	128	129	-1	-0.01	111	7
GRDD01	DDH	129	130	-1	-0.01	90	-5
GRDD01	DDH	130	131	-1	-0.01	101	6
GRDD01	DDH	131	132	-1	-0.01	6	8
GRDD01	DDH	132	133	-1	-0.01	170	7
GRDD01	DDH	133	134	-1	-0.01	35	6
GRDD01	DDH	134	135	-1	-0.01	32	7
GRDD01	DDH	135	136	-1	-0.01	14	12
GRDD01	DDH	136	137	-1	-0.01	200	9
GRDD01	DDH	137	138	-1	-0.01	239	-5
GRDD01	DDH	138	139	-1	-0.01	716	22

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
GRDD01	DDH	139	140	-1	-0.01	796	20
GRDD01	DDH	140	141	-1	-0.01	535	8
GRDD01	DDH	141	142	-1	-0.01	27	-5
GRDD01	DDH	142	143	-1	-0.01	426	6
GRDD01	DDH	143	144	-1	-0.01	114	11
GRDD01	DDH	144	145	-1	-0.01	173	9
GRDD01	DDH	145	146	-1	-0.01	380	7
GRDD01	DDH	146	147	-1	0.12	2050	15
GRDD01	DDH	147	148	-1	-0.01	904	11
GRDD01	DDH	148	149	-1	-0.01	427	8
GRDD01	DDH	149	150	-1	-0.01	350	11
GRDD01	DDH	150	151	-1	-0.01	119	6
GRDD01	DDH	151	152	-1	0.02	116	6
GRDD01	DDH	152	153	-1	0.04	754	9
GRDD01	DDH	153	154	-1	0.2	3190	85
GRDD01	DDH	154	155	-1	0.03	912	7
GRDD01	DDH	155	156	-1	0.03	1090	8
GRDD01	DDH	156	157	-1	0.02	312	8
GRDD01	DDH	157	158	-1	0.07	1030	5
GRDD01	DDH	158	159	-1	0.26	3110	12
GRDD01	DDH	159	160	-1	0.17	2230	80
GRDD01	DDH	160	161	-1	0.24	2810	108
GRDD01	DDH	161	162	1	0.28	4380	30
GRDD01	DDH	162	163	-1	0.1	1330	6
GRDD01	DDH	163	164	-1	0.16	1350	11
GRDD01	DDH	164	165	-1	0.09	679	25
GRDD01	DDH	165	166	-1	0.06	546	60
GRDD01	DDH	166	167	-1	0.25	4690	105
GRDD01	DDH	167	168	-1	0.07	2060	44
GRDD01	DDH	168	169	-1	-0.01	90	-5
GRDD01	DDH	169	170	-1	0.05	606	25
GRDD01	DDH	170	171	1	0.1	2680	78
GRDD01	DDH	172	173	1	0.33	7010	35
GRDD01	DDH	173	174	1	0.18	4840	41
GRDD01	DDH	174	175	1	0.27	6110	71
GRDD01	DDH	175	176	2	0.37	7910	125
GRDD01	DDH	176	177	2	0.54	9010	40
GRDD01	DDH	177	178	1	0.34	6210	51
GRDD01	DDH	178	179	-1	0.02	178	-5
GRDD01	DDH	179	180	1	0.13	2220	23
GRDD01	DDH	180	181	1	0.21	5030	47
GRDD01	DDH	181	182	3	0.36	9490	169
GRDD01	DDH	182	183	2	0.54	7800	346
GRDD01	DDH	183	184	3	0.83	12100	275
GRDD01	DDH	184	185	3	0.7	10300	181

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
GRDD01	DDH	185	186	2	0.62	7410	273
GRDD01	DDH	186	187	2	0.58	6500	256
GRDD01	DDH	187	188	3	0.67	7170	334
GRDD01	DDH	188	189	1	0.28	3170	217
GRDD01	DDH	189	190	3	1	9020	109
GRDD01	DDH	190	191	2	1.1	11800	929
GRDD01	DDH	191	192	1	0.43	6690	672
GRDD01	DDH	192	193	1	0.28	3100	370
GRDD01	DDH	193	194	1	0.37	4100	214
GRDD01	DDH	194	195	-1	0.25	2460	73
GRDD01	DDH	195	196	-1	0.29	3000	31
GRDD01	DDH	196	197	-1	0.08	788	14
GRDD01	DDH	197	198	-1	0.1	101	9
GRDD01	DDH	198	199	-1	0.31	3260	8
GRDD01	DDH	199	200	-1	0.11	899	13
GRDD01	DDH	200	201	-1	0.12	687	25
GRDD01	DDH	201	202	1	0.24	3160	74
GRDD01	DDH	202	203	-1	0.08	1030	20
GRDD01	DDH	203	204	-1	0.07	835	9
GRDD01	DDH	204	205	-1	0.07	272	15
GRDD01	DDH	205	206	-1	0.04	300	16
GRDD01	DDH	206	207	-1	0.04	270	19
GRDD01	DDH	207	208	-1	0.03	149	12
GRDD01	DDH	208	209	-1	0.03	323	20
GRDD01	DDH	209	209.8	-1	0.01	136	14
GRDD02	DDH	70	71	-1	-0.01	93	9
GRDD02	DDH	71	72	-1	0.05	405	6
GRDD02	DDH	72	72.8	-1	-0.01	189	-5
GRDD02	DDH	72.8	73.8	-1	-0.01	257	-5
GRDD02	DDH	73.8	74.8	-1	0.01	140	-5
GRDD02	DDH	74.8	75.8	-1	-0.01	413	-5
GRDD02	DDH	75.8	77	-1	-0.01	2590	5
GRDD02	DDH	77	78	-1	-0.01	1340	17
GRDD02	DDH	78	79	-1	-0.01	1120	34
GRDD02	DDH	79	80	-1	-0.01	387	26
GRDD02	DDH	80	81	-1	-0.01	433	30
GRDD02	DDH	81	82	-1	-0.01	73	-5
GRDD02	DDH	82	83	-1	-0.01	863	7
GRDD02	DDH	83	84	-1	-0.01	1640	-5
GRDD02	DDH	84	85	-1	-0.01	488	6
GRDD02	DDH	85	86	-1	-0.01	998	6
GRDD02	DDH	86	87	-1	-0.01	473	-5
GRDD02	DDH	87	88	-1	-0.01	1800	-5
GRDD02	DDH	88	89	-1	-0.01	723	-5
GRDD02	DDH	118	119	-1	-0.01	163	-5


SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
GRDD02	DDH	119	120	-1	0.14	1610	7
GRDD02	DDH	120	121	-1	0.21	718	-5
GRDD02	DDH	121	122	-1	-0.01	497	9
GRDD02	DDH	122	123	-1	-0.01	296	5
GRDD02	DDH	123	124	-1	-0.01	61	-5
GRDD02	DDH	124	125	-1	-0.01	76	-5
GRDD02	DDH	125	126	-1	0.01	996	35
GRDD02	DDH	126	127	2	0.63	7790	22
GRDD02	DDH	127	128	-1	0.06	1950	12
GRDD02	DDH	128	129	2	0.23	6100	55
GRDD02	DDH	129	130	-1	0.04	2720	38
GRDD02	DDH	130	131	-1	-0.01	1520	77
GRDD03	RC	0	3	-1	-0.01	158	-5
GRDD03	RC	3	6	-1	-0.01	106	8
GRDD03	RC	6	9	-1	-0.01	163	7
GRDD03	RC	9	12	-1	0.1	1030	133
GRDD03	RC	12	15	-1	-0.01	250	9
GRDD03	RC	15	18	-1	-0.01	120	8
GRDD03	RC	18	21	-1	-0.01	222	9
GRDD03	RC	21	24	-1	-0.01	106	6
GRDD03	RC	24	27	-1	-0.01	37	5
GRDD03	RC	27	30	-1	-0.01	48	6
GRDD03	RC	30	33	-1	-0.01	52	7
GRDD03	RC	33	36	-1	-0.01	41	6
GRDD03	RC	36	39	-1	-0.01	45	6
GRDD03	RC	39	42	-1	-0.01	444	16
GRDD03	RC	42	45	-1	-0.01	91	8
GRDD03	RC	45	48	-1	-0.01	62	8
GRDD03	DDH	61.5	62.5	-1	-0.01	140	-5
GRDD03	DDH	62.5	63.5	-1	0.15	1500	7
GRDD03	DDH	63.5	64.5	-1	0.55	1150	-5
GRDD03	DDH	64.5	65.5	-1	0.04	469	-5
GRDD03	DDH	65.5	66.5	-1	-0.01	156	-5
GRDD03	DDH	66.5	67.5	-1	-0.01	147	-5
GRDD03	DDH	67.5	68.5	-1	-0.01	42	-5
GRDD03	DDH	68.5	69.5	-1	-0.01	188	-5
GRDD03	DDH	69.5	70.5	-1	-0.01	279	-5
GRDD03	DDH	70.5	71.5	-1	-0.01	1750	26
GRDD03	DDH	71.5	72.5	-1	-0.01	177	65
GRDD03	DDH	112	113	-1	-0.01	1570	61
GRDD03	DDH	113	114	-1	-0.01	1370	45
GRDD03	DDH	114	115	-1	-0.01	3440	103
GRDD03	DDH	131	132	-1	0.02	2480	80
GRDD03	DDH	132	133	-1	0.12	4060	53
GRDD03	DDH	133	134	1	0.37	8340	86

SampleID	Туре	From_m	To_m	Ag_ppm	Au_ppm	Cu_ppm	Mo_ppm
GRDD03	DDH	134	135	-1	-0.01	3030	81
GRDD03	DDH	135	136	-1	-0.01	3740	61
GRDD03	DDH	136	137	-1	-0.01	1280	32
GRDD03	DDH	137	138	-1	0.02	2180	33
GRDD03	DDH	138	139	-1	0.01	2590	50
GRDD03	DDH	139	140	-1	0.02	4060	97
GRDD03	DDH	140	141	1	0.22	7170	94
GRDD03	DDH	141	142	1	0.3	6910	65
GRDD03	DDH	142	143	-1	0.08	6070	47
GRDD03	DDH	143	144	-1	0.22	4220	69
GRDD03	DDH	144	145	1	0.24	7360	235
GRDD03	DDH	145	146	-1	0.23	6950	261
GRDD03	DDH	146	147	-1	0.01	1970	65
GRDD03	DDH	147	148	-1	-0.01	58	-5
GRDD03	DDH	148	149	-1	0.01	159	10
GRDD03	DDH	149	150	-1	0.01	1500	47
GRDD03	DDH	150	151	1	0.25	4320	55
GRDD03	DDH	151	152	-1	0.39	5130	258
GRDD03	DDH	152	153	2	0.26	7790	12

Burra Rd Prospect – Gundagai North

GRS02906 SOIL S97358 6132332 0.07 -0.01 734 0.2 84 13.5 60 GRS02907 SOIL S97456 6132333 0.1 -0.01 691 0.27 46.5 17 26 GRS02909 SOIL S97555 6132332 0.07 -0.01 509 0.22 51 16.5 24 GRS02901 SOIL S97556 6132332 0.07 -0.01 502 0.26 82 1.7.5 36 GRS02913 SOIL S97556 6132332 0.07 -0.01 605 0.2 76 13.5 40 GRS02915 SOIL S98256 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02916 SOIL S98356 6132331 0.07 -0.01 736 0.21 58.5 15.5 34 GRS02918 SOIL S98457 6132331 0.09 0.01 170 <td< th=""><th>SampleID</th><th>Туре</th><th>Easting</th><th>Northing</th><th>Ag</th><th>Au</th><th>Ва</th><th>Bi</th><th>Cu</th><th>Pb</th><th>Zn</th></td<>	SampleID	Туре	Easting	Northing	Ag	Au	Ва	Bi	Cu	Pb	Zn
GRS02907 SOIL 597456 6132333 0.1 -0.01 1360 0.41 87 20 64 GRS02908 SOIL 597555 6132332 0.07 -0.01 691 0.27 46.5 17 26 GRS02910 SOIL 597556 6132332 0.07 -0.01 522 0.26 82 17.5 36 GRS02911 SOIL 597556 6132332 0.09 -0.01 631 0.19 64 13 42 GRS02913 SOIL 598556 6132332 0.07 -0.01 650 0.27 76 13.5 40 GRS02915 SOIL 598556 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02917 SOIL 598556 6132331 0.10 0.01 1270 0.16 62 15 46 GRS02917 SOIL 598556 6132331 0.09 0.01 724 0.16<											
GRS02908 SOIL 597555 6132332 0.1 -0.01 691 0.27 46.5 17 26 GRS02909 SOIL 597555 6132332 0.07 -0.01 509 0.22 51 16.5 24 GRS02910 SOIL 597556 6132332 0.09 -0.01 673 0.19 64 13 42 GRS02911 SOIL 597556 6132332 0.07 -0.01 605 0.2 76 13.5 40 GRS02914 SOIL 598557 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02915 SOIL 598256 6132331 0.07 -0.01 736 0.21 82.5 14 40 GRS02918 SOIL 598575 6132331 0.07 -0.01 726 0.12 92.5 14 50 GRS02917 SOIL 598575 6132331 0.07 -0.01 220 0.	GRS02907		597456	6132333	0.1	-0.01	1360	0.41	87	20	64
GR\$02909 SOIL 597555 6132332 0.07 -0.01 509 0.22 51 16.5 24 GR\$02910 SOIL 597756 6132332 0.07 -0.01 522 0.26 82 17.5 36 GR\$02911 SOIL 597856 6132332 0.09 -0.01 631 0.19 63 13.5 40 GR\$02913 SOIL 598556 6132331 0.07 -0.01 548 0.19 95 12.5 54 GR\$02916 SOIL 598556 6132331 0.07 -0.01 548 0.19 95 12.5 54 GR\$02917 SOIL 598556 6132331 0.09 -0.01 735 0.21 58.5 15.5 34 GR\$02918 SOIL 598556 6132330 0.09 0.01 1000 0.22 99 16 44 GR\$02923 SOIL 598556 6132330 0.07 0.01 724 <td< td=""><td>GRS02908</td><td>SOIL</td><td>597555</td><td>6132333</td><td>0.1</td><td>-0.01</td><td>691</td><td>0.27</td><td>46.5</td><td>17</td><td>26</td></td<>	GRS02908	SOIL	597555	6132333	0.1	-0.01	691	0.27	46.5	17	26
GRS02910 SOIL 597754 6132332 0.07 -0.01 522 0.26 82 17.5 36 GRS02911 SOIL 597856 6132332 0.09 -0.01 673 0.19 64 13 42 GRS02913 SOIL 598057 6132332 0.07 -0.01 605 0.21 80 14 42 GRS02915 SOIL 598256 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02916 SOIL 598256 6132331 0.07 -0.01 735 0.21 88.7 17 46 GRS02919 SOIL 598555 6132331 0.09 -0.01 735 0.21 92.5 14 50 GRS02919 SOIL 598555 6132331 0.09 0.01 844 0.16 75 12.5 40 GRS0292 SOIL 598555 6132331 0.09 0.01 844 0.16<	GRS02909		597655	6132332	0.07	-0.01	509	0.22	51	16.5	24
GRS02911 SOIL 597856 6132332 0.09 -0.01 673 0.19 64 13 42 GRS02912 SOIL 597855 6132332 0.09 -0.01 631 0.19 63 13.5 36 GRS02913 SOIL 598155 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02916 SOIL 598256 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02917 SOIL 598457 6132331 0.09 -0.01 735 0.21 58.5 15.5 34 GRS02919 SOIL 598555 6132330 0.09 0.02 1000 0.22 99 16 44 GRS02923 SOIL 598555 6132330 0.07 0.01 724 0.16 65.5 13 38 GRS02926 SOIL 597554 6131932 0.06 0.01 645 0.				6132332							
GRS02913 SOIL 598057 6132332 0.07 0.01 605 0.2 76 13.5 40 GRS02914 SOIL 598155 6132333 0.1 -0.01 736 0.21 80 14 42 GRS02915 SOIL 598256 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02916 SOIL 598355 6132331 0.09 -0.01 735 0.21 58.5 15.5 34 GRS02918 SOIL 598555 6132330 0.09 0.02 1000 0.21 92.5 14 50 GRS02922 SOIL 598556 6132330 0.07 0.01 724 0.16 65.5 13 38 GRS02925 SOIL 598555 6131332 0.06 0.01 844 0.16 75 1.2.5 40 GRS02928 SOIL 597556 6131932 0.06 0.01 425 0.26 50 17.5 26 GRS02928 SOIL 597556 61	GRS02911		597856	6132332	0.09		673		64	13	
GRS02913 SOIL 598057 6132332 0.07 0.01 605 0.2 76 13.5 40 GRS02914 SOIL 598155 6132333 0.07 -0.01 736 0.21 80 14 42 GRS02915 SOIL 598256 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02916 SOIL 598357 6132331 0.09 -0.01 735 0.21 58.5 15.5 34 GRS02918 SOIL 598555 6132330 0.09 0.02 1000 0.21 92.5 14 50 GRS02922 SOIL 598556 6132330 0.07 0.01 1000 0.22 99 16 44 GRS02925 SOIL 598556 6132330 0.07 0.01 844 0.16 75 12.5 40 GRS02925 SOIL 597556 6131932 0.06 0.01 425 0.26 50 17.5 26 GRS02928 SOIL 597556 613	GRS02912	SOIL	597955	6132332	0.09	-0.01	631	0.19	63	13.5	36
GRS02915 SOIL 598256 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02916 SOIL 598354 6132334 0.1 -0.01 591 0.25 87 17 46 GRS02917 SOIL 598355 6132331 0.01 0.01 1270 0.16 62 15 46 GRS02919 SOIL 598555 6132330 0.09 0.01 1000 0.22 99 16 44 GRS02922 SOIL 598755 6132330 0.07 0.01 724 0.16 65.5 13 38 GRS02925 SOIL 598556 6131331 0.07 -0.01 546 0.19 50.5 14 34 GRS02927 SOIL 597554 6131932 0.06 -0.01 443 0.25 55.5 16.5 30 GRS02930 SOIL 597557 6131932 0.05 -0.01 527 0.14	GRS02913			6132332	0.07						
GRS02915 SOIL 598256 6132331 0.07 -0.01 548 0.19 95 12.5 54 GRS02916 SOIL 598354 6132334 0.1 -0.01 591 0.25 87 17 46 GRS02917 SOIL 598355 6132331 0.01 0.01 1270 0.16 62 15 46 GRS02919 SOIL 598555 6132330 0.09 0.01 1000 0.22 99 16 44 GRS02922 SOIL 598755 6132330 0.07 0.01 724 0.16 65.5 13 38 GRS02925 SOIL 598556 6131331 0.07 -0.01 546 0.19 50.5 14 34 GRS02927 SOIL 597554 6131932 0.06 -0.01 443 0.25 55.5 16.5 30 GRS02930 SOIL 597557 6131932 0.05 -0.01 527 0.14	GRS02914	SOIL	598155	6132333	0.1	-0.01	736	0.21	80	14	42
GRS02917 SOIL 598457 6132331 0.09 -0.01 735 0.21 58.5 15.5 34 GRS02918 SOIL 598555 6132331 0.1 0.01 1270 0.16 62 15 46 GRS02919 SOIL 598555 6132333 0.00 0.01 1000 0.21 92.5 14 50 GRS02923 SOIL 598555 6132333 0.00 0.01 1000 0.22 99 16 44 GRS02925 SOIL 598555 6132331 0.09 0.01 844 0.16 75 12.5 40 GRS02925 SOIL 597358 6131937 0.07 -0.01 546 0.19 50.5 14 34 GRS02928 SOIL 597554 6131932 0.06 -0.01 425 0.26 50 17.5 26 GRS02929 SOIL 597555 6131932 0.05 -0.01 587 51.3 38 GRS02930 SOIL 59755 6131932 0.05 <	GRS02915		598256	6132331	0.07		548		95	12.5	54
GRS02918 SOIL 598555 6132331 0.1 0.01 1270 0.16 62 15 46 GRS02919 SOIL 598657 6132335 0.09 0.02 1000 0.21 92.5 14 50 GRS02922 SOIL 598755 6132330 0.07 0.01 724 0.16 65.5 13 38 GRS02925 SOIL 598955 6132331 0.09 0.01 884 0.16 75 12.5 40 GRS02926 SOIL 597358 6131937 0.07 -0.01 546 0.19 50.5 14 34 GRS02927 SOIL 597554 6131932 0.06 -0.01 425 0.26 50 17.5 26 GRS02930 SOIL 597555 6131932 0.05 -0.01 557 0.14 61.5 13 38 GRS02931 SOIL 597557 6131932 0.05 0.01 784 0.15	GRS02916	SOIL	598354	6132334	0.1	-0.01	591	0.25	87	17	46
GRS02919 SOIL 598657 6132335 0.09 0.02 1000 0.21 92.5 14 50 GRS02922 SOIL 598755 6132333 0.06 0.01 1000 0.22 99 16 44 GRS02923 SOIL 598856 6132330 0.07 0.01 724 0.16 65.5 13 38 GRS02925 SOIL 597358 6131937 0.07 -0.01 546 0.19 50.5 24.3 44 GRS02926 SOIL 597358 6131932 0.06 -0.01 425 0.26 50 17.5 26 GRS02929 SOIL 597554 6131932 0.06 -0.01 443 0.25 55.5 16.5 30 GRS02930 SOIL 597556 6131931 0.07 -0.01 628 0.18 57.5 13 26 GRS02931 SOIL 597557 6131932 0.05 0.01 784 0.15 70.5 10.5 42 GRS02933 SOIL 598556	GRS02917	SOIL	598457	6132331	0.09	-0.01	735	0.21	58.5	15.5	34
GRS02922 SOIL 598755 6132333 0.06 0.01 1000 0.22 99 16 44 GRS02923 SOIL 598856 6132330 0.07 0.01 724 0.16 65.5 13 38 GRS02925 SOIL 598955 6132331 0.09 0.01 884 0.16 75 12.5 40 GRS02926 SOIL 597358 6131937 0.07 -0.01 546 0.19 50.5 14 34 GRS02926 SOIL 597554 6131932 0.06 -0.01 425 0.26 50 17.5 26 GRS02920 SOIL 59755 6131931 0.07 -0.01 628 0.18 57.5 13 26 GRS02931 SOIL 597557 6131932 0.05 0.01 784 0.15 70.5 10.5 42 GRS02933 SOIL 598556 6131931 0.09 0.01 738 0.1	GRS02918	SOIL	598555	6132331	0.1	0.01	1270	0.16	62	15	46
GRS02923 SOIL 598856 6132330 0.07 0.01 724 0.16 65.5 13 38 GRS02925 SOIL 598955 6132331 0.09 0.01 884 0.16 75 12.5 40 GRS02926 SOIL 597358 6131937 0.07 -0.01 546 0.19 50.5 14 34 GRS02927 SOIL 597554 6131932 0.06 -0.01 425 0.26 50 17.5 26 GRS02929 SOIL 597555 6131932 0.06 -0.01 443 0.25 55.5 16.5 30 GRS02930 SOIL 597555 6131932 0.05 -0.01 577 0.14 61.5 11 38 GRS02931 SOIL 597855 6131931 0.07 -0.01 628 0.18 57.5 10.5 42 GRS02933 SOIL 598055 6131931 0.07 -0.01 691 0.2 72.5 11.5 58 GRS02935 SOIL 598156	GRS02919	SOIL	598657	6132335	0.09	0.02	1000	0.21	92.5	14	50
GRS02925 SOIL 598955 6132331 0.09 0.01 884 0.16 75 12.5 40 GRS02926 SOIL 597358 6131937 0.07 -0.01 546 0.19 50.5 14 34 GRS02927 SOIL 597554 6131932 0.06 -0.01 425 0.26 50 17.5 26 GRS02929 SOIL 597555 6131932 0.06 -0.01 443 0.25 55.5 16.5 30 GRS02930 SOIL 597555 6131932 0.05 -0.01 577 0.14 61.5 11 38 GRS02931 SOIL 59755 6131931 0.07 -0.01 628 0.18 57.5 10.5 42 GRS02932 SOIL 59855 6131932 0.09 0.01 672 0.15 78.5 10.5 42 GRS02935 SOIL 598260 6131935 0.09 0.01 740 <	GRS02922	SOIL	598755	6132333	0.06	0.01	1000	0.22	99	16	44
GRS02926SOIL59735861319370.07-0.015460.1950.51434GRS02927SOIL59745561319320.060.016650.2865.523.554GRS02928SOIL59755461319320.06-0.014250.265017.526GRS02929SOIL59765561319320.06-0.014430.2555.516.530GRS02930SOIL59775561319320.05-0.015570.1461.51138GRS02931SOIL59785561319310.07-0.016280.1857.51326GRS02933SOIL59785561319310.090.016720.1578.510.544GRS02934SOIL59815661319350.07-0.016910.272.511.558GRS02936SOIL59835461319320.090.017400.191071450GRS02937SOIL59855661319310.1-0.018580.1968.51352GRS02939SOIL5985661319330.050.0114000.1561.51558GRS02937SOIL5985661319330.060.0113500.14701450GRS02939SOIL5985661319330.050.0116000.1561.51558	GRS02923	SOIL	598856	6132330	0.07	0.01	724	0.16	65.5	13	38
GRS02927 SOIL 597455 6131932 0.06 0.01 665 0.28 65.5 23.5 54 GRS02928 SOIL 597554 6131932 0.06 -0.01 425 0.26 50 17.5 26 GRS02929 SOIL 597655 6131932 0.06 -0.01 443 0.25 55.5 16.5 30 GRS02930 SOIL 597755 6131932 0.05 -0.01 557 0.14 61.5 11 38 GRS02931 SOIL 597855 6131931 0.07 -0.01 628 0.18 57.5 13 26 GRS02933 SOIL 597957 6131932 0.05 0.01 784 0.15 70.5 10.5 42 GRS02934 SOIL 598156 6131935 0.07 -0.01 691 0.2 72.5 11.5 58 GRS02936 SOIL 598260 6131932 0.09 0.01 740 0.19 107 14 50 GRS02937 SOIL 598354	GRS02925	SOIL	598955	6132331	0.09	0.01	884	0.16	75	12.5	40
GRS02928SOIL59755461319320.06-0.014250.265017.526GRS02929SOIL59765561319320.06-0.014430.2555.516.530GRS02930SOIL59775561319320.05-0.015570.1461.51138GRS02931SOIL59785561319310.07-0.016280.1857.51326GRS02932SOIL59795761319320.050.017840.1570.510.542GRS02933SOIL59805561319310.090.016720.1578.510.544GRS02934SOIL59815661319350.07-0.016910.272.511.558GRS02935SOIL59826061319320.090.017400.191071450GRS02937SOIL59855661319310.1-0.018580.1968.51352GRS02938SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL59855661319300.050.0114700.147212.566GRS02942SOIL59855661319330.07-0.0111300.0996962GRS02943SOIL59855661319330.07-0.0111300.0996962 <td>GRS02926</td> <td>SOIL</td> <td>597358</td> <td>6131937</td> <td>0.07</td> <td>-0.01</td> <td>546</td> <td>0.19</td> <td>50.5</td> <td>14</td> <td>34</td>	GRS02926	SOIL	597358	6131937	0.07	-0.01	546	0.19	50.5	14	34
GRS02929SOIL59765561319320.06-0.014430.2555.516.530GRS02930SOIL59775561319320.05-0.015570.1461.51138GRS02931SOIL59785561319310.07-0.016280.1857.51326GRS02932SOIL59795761319320.050.017840.1570.510.542GRS02933SOIL59805561319310.090.016720.1578.510.544GRS02934SOIL59815661319350.07-0.016910.272.511.558GRS02935SOIL59826061319350.090.017400.191071450GRS02936SOIL59845761319360.1-0.018580.1968.51352GRS02937SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL59855661319300.050.0114000.1561.51558GRS02942SOIL5985561319330.060.0113500.187417.558GRS02943SOIL5985561319330.07-0.0114700.147212.566GRS02945SOIL5985561319330.07-0.0111300.0996962 <td>GRS02927</td> <td>SOIL</td> <td>597455</td> <td>6131932</td> <td>0.06</td> <td>0.01</td> <td>665</td> <td>0.28</td> <td>65.5</td> <td>23.5</td> <td>54</td>	GRS02927	SOIL	597455	6131932	0.06	0.01	665	0.28	65.5	23.5	54
GRS02930SOIL59775561319320.05-0.015570.1461.51138GRS02931SOIL59785561319310.07-0.016280.1857.51326GRS02932SOIL59795761319320.050.017840.1570.510.542GRS02933SOIL59805561319310.090.016720.1578.510.544GRS02934SOIL59815661319350.07-0.016910.272.511.558GRS02935SOIL59826061319350.090.017380.198712.546GRS02936SOIL59835461319320.090.017400.191071450GRS02937SOIL59845761319360.1-0.018580.1968.51352GRS02938SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL5985661319330.050.0113500.187417.558GRS02942SOIL5985561319330.07-0.0111300.0996962GRS02943SOIL5985561319330.07-0.0111300.0996962GRS02945SOIL5995561319330.07-0.0111300.996962G	GRS02928	SOIL	597554	6131932	0.06	-0.01	425	0.26	50	17.5	26
GRS02931SOIL59785561319310.07-0.016280.1857.51326GRS02932SOIL59795761319320.050.017840.1570.510.542GRS02933SOIL59805561319310.090.016720.1578.510.544GRS02934SOIL59815661319350.07-0.016910.272.511.558GRS02935SOIL59826061319350.090.017400.191071450GRS02936SOIL59835461319320.090.017400.191071450GRS02937SOIL59845761319360.1-0.018580.1968.51352GRS02938SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL59855661319330.060.0113500.187417.558GRS02942SOIL5985561319330.07-0.0111300.0996962GRS02943SOIL5985561319330.07-0.0111300.0996962GRS02945SOIL5995561319330.07-0.0111300.996962GRS02947SOIL5995561319330.07-0.017290.14701048GRS0	GRS02929	SOIL	597655	6131932	0.06	-0.01	443	0.25	55.5	16.5	30
GRS02932SOIL59795761319320.050.017840.1570.510.542GRS02933SOIL59805561319310.090.016720.1578.510.544GRS02934SOIL59815661319350.07-0.016910.272.511.558GRS02935SOIL59826061319350.090.017380.198712.546GRS02936SOIL59835461319320.090.017400.191071450GRS02937SOIL59845761319360.1-0.018580.1968.51352GRS02938SOIL5985661319310.1-0.0116500.149014.570GRS02939SOIL5985661319300.050.0116400.1561.51558GRS02942SOIL5985661319330.060.0113500.187417.558GRS02943SOIL5985561319330.07-0.0114700.147212.566GRS02945SOIL5995561319330.07-0.0111300.0996962GRS02947SOIL59915661319330.07-0.01714731042GRS02948SOIL59915661319330.07-0.017290.14701048GRS02948	GRS02930	SOIL	597755	6131932	0.05	-0.01	557	0.14	61.5	11	38
GRS02933SOIL59805561319310.090.016720.1578.510.544GRS02934SOIL59815661319350.07-0.016910.272.511.558GRS02935SOIL59826061319350.090.017380.198712.546GRS02936SOIL59835461319320.090.017400.191071450GRS02937SOIL59845761319360.1-0.018580.1968.51352GRS02938SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL59855661319300.050.0116400.1561.51558GRS02942SOIL59875661319330.060.0113500.187417.558GRS02943SOIL5985561319300.09-0.0114700.147212.566GRS02945SOIL5985561319330.07-0.0111300.0996962GRS02946SOIL5995561319330.07-0.017290.14701048GRS02947SOIL5995561319330.07-0.013530.14581158GRS02948SOIL59935561319330.07-0.013530.14581158GR	GRS02931	SOIL	597855	6131931	0.07	-0.01	628	0.18	57.5	13	26
GRS02934SOIL59815661319350.07-0.016910.272.511.558GRS02935SOIL59826061319350.090.017380.198712.546GRS02936SOIL59835461319320.090.017400.191071450GRS02937SOIL59845761319360.1-0.018580.1968.51352GRS02938SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL59855661319300.050.0116400.1561.51558GRS02942SOIL59875661319330.060.0113500.187417.558GRS02943SOIL5985561319330.07-0.0111300.0996962GRS02945SOIL5985561319330.05-0.017150.14731042GRS02946SOIL5995561319310.09-0.018040.1355.51042GRS02948SOIL5995561319330.07-0.017290.14701048GRS02948SOIL5995561319330.07-0.013530.14581158GRS02949SOIL5995561319330.07-0.013530.14581158GRS02950	GRS02932	SOIL	597957	6131932	0.05	0.01	784	0.15	70.5	10.5	42
GRS02935SOIL59826061319350.090.017380.198712.546GRS02936SOIL59835461319320.090.017400.191071450GRS02937SOIL59845761319360.1-0.018580.1968.51352GRS02938SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL59855661319300.050.0116400.1561.51558GRS02942SOIL59875661319330.060.0113500.187417.558GRS02943SOIL5985561319330.07-0.0111300.0996962GRS02945SOIL59895561319330.07-0.0111300.0996962GRS02946SOIL59905561319330.07-0.017290.14731042GRS02947SOIL59915661319330.07-0.017290.14701048GRS02948SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59935561315310.12-0.016600.151319.554GRS02951SOIL59925361315300.07-0.017280.1242.510.522GR	GRS02933	SOIL	598055	6131931	0.09	0.01	672	0.15	78.5	10.5	44
GRS02936SOIL59835461319320.090.017400.191071450GRS02937SOIL59845761319360.1-0.018580.1968.51352GRS02938SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL59865361319300.050.0116400.1561.51558GRS02942SOIL59875661319330.060.0113500.187417.558GRS02943SOIL59885661319300.09-0.0114700.147212.566GRS02945SOIL59895561319330.07-0.0111300.0996962GRS02946SOIL59905561319330.05-0.017150.14731042GRS02947SOIL59915661319330.07-0.018040.1355.51042GRS02948SOIL59935561319330.07-0.017290.14701048GRS02950SOIL59935561319330.17-0.013530.14581158GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522<	GRS02934	SOIL	598156	6131935	0.07	-0.01	691	0.2	72.5	11.5	58
GRS02937SOIL59845761319360.1-0.018580.1968.51352GRS02938SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL59865361319300.050.0116400.1561.51558GRS02942SOIL59875661319330.060.0113500.187417.558GRS02943SOIL59885661319300.09-0.0114700.147212.566GRS02945SOIL59895561319330.07-0.0111300.0996962GRS02946SOIL59905561319330.05-0.017150.14731042GRS02947SOIL59915661319310.09-0.018040.1355.51042GRS02948SOIL59925261319330.07-0.017290.14701048GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59935561319330.12-0.016600.151319.554GRS02951SOIL59925361315310.12-0.016600.151319.554GRS02953SOIL59915661315350.1-0.019310.121089.570 <td>GRS02935</td> <td>SOIL</td> <td>598260</td> <td>6131935</td> <td>0.09</td> <td>0.01</td> <td>738</td> <td>0.19</td> <td>87</td> <td>12.5</td> <td>46</td>	GRS02935	SOIL	598260	6131935	0.09	0.01	738	0.19	87	12.5	46
GRS02938SOIL59855661319310.1-0.0116500.149014.570GRS02939SOIL59865361319300.050.0116400.1561.51558GRS02942SOIL59875661319330.060.0113500.187417.558GRS02943SOIL59885661319300.09-0.0114700.147212.566GRS02945SOIL59895561319330.07-0.0111300.0996962GRS02946SOIL59905561319330.05-0.017150.14731042GRS02947SOIL59915661319310.09-0.018040.1355.51042GRS02948SOIL59925261319330.07-0.017290.14701048GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59935561319330.17-0.014210.1862.513.560GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570<	GRS02936	SOIL	598354	6131932	0.09	0.01	740	0.19	107	14	50
GRS02939SOIL59865361319300.050.0116400.1561.51558GRS02942SOIL59875661319330.060.0113500.187417.558GRS02943SOIL59885661319300.09-0.0114700.147212.566GRS02945SOIL59895561319330.07-0.0111300.0996962GRS02946SOIL59905561319330.05-0.017150.14731042GRS02947SOIL59915661319310.09-0.018040.1355.51042GRS02948SOIL59925261319330.07-0.017290.14701048GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59945261319330.12-0.016600.151319.554GRS02951SOIL59935561315310.12-0.017280.1242.510.522GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02937	SOIL	598457	6131936	0.1	-0.01	858	0.19	68.5	13	52
GRS02942SOIL59875661319330.060.0113500.187417.558GRS02943SOIL59885661319300.09-0.0114700.147212.566GRS02945SOIL59895561319330.07-0.0111300.0996962GRS02946SOIL59905561319330.05-0.017150.14731042GRS02947SOIL59915661319310.09-0.018040.1355.51042GRS02948SOIL59925261319330.07-0.017290.14701048GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59945261319330.1-0.014210.1862.513.560GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02938	SOIL	598556	6131931	0.1	-0.01	1650	0.14	90	14.5	70
GRS02943SOIL59885661319300.09-0.0114700.147212.566GRS02945SOIL59895561319330.07-0.0111300.0996962GRS02946SOIL59905561319330.05-0.017150.14731042GRS02947SOIL59915661319310.09-0.018040.1355.51042GRS02948SOIL59925261319330.07-0.017290.14701048GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59945261319330.1-0.014210.1862.513.560GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02939	SOIL	598653	6131930	0.05	0.01	1640	0.15	61.5	15	58
GRS02945SOIL59895561319330.07-0.0111300.0996962GRS02946SOIL59905561319330.05-0.017150.14731042GRS02947SOIL59915661319310.09-0.018040.1355.51042GRS02948SOIL59925261319330.07-0.017290.14701048GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59945261319330.1-0.014210.1862.513.560GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02942	SOIL	598756	6131933	0.06	0.01	1350	0.18	74	17.5	58
GRS02946SOIL59905561319330.05-0.017150.14731042GRS02947SOIL59915661319310.09-0.018040.1355.51042GRS02948SOIL59925261319330.07-0.017290.14701048GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59945261319330.1-0.014210.1862.513.560GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02943	SOIL	598856	6131930	0.09	-0.01	1470	0.14	72	12.5	66
GRS02947SOIL59915661319310.09-0.018040.1355.51042GRS02948SOIL59925261319330.07-0.017290.14701048GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59945261319330.1-0.014210.1862.513.560GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02945	SOIL	598955	6131933	0.07	-0.01	1130	0.09	96	9	62
GRS02948SOIL59925261319330.07-0.017290.14701048GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59945261319330.1-0.014210.1862.513.560GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02946	SOIL	599055	6131933	0.05	-0.01	715	0.14	73	10	42
GRS02949SOIL59935561319330.07-0.013530.14581158GRS02950SOIL59945261319330.1-0.014210.1862.513.560GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02947	SOIL	599156	6131931	0.09	-0.01	804	0.13	55.5	10	42
GRS02950SOIL59945261319330.1-0.014210.1862.513.560GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02948	SOIL	599252	6131933	0.07	-0.01	729	0.14	70	10	48
GRS02951SOIL59935561315310.12-0.016600.151319.554GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02949	SOIL	599355	6131933	0.07	-0.01	353	0.14	58	11	58
GRS02952SOIL59925361315300.07-0.017280.1242.510.522GRS02953SOIL59915661315350.1-0.019310.121089.570	GRS02950	SOIL	599452	6131933	0.1	-0.01	421	0.18	62.5	13.5	60
GRS02953 SOIL 599156 6131535 0.1 -0.01 931 0.12 108 9.5 70	GRS02951	SOIL	599355	6131531	0.12	-0.01	660	0.15	131	9.5	54
	GRS02952	SOIL	599253	6131530	0.07	-0.01	728	0.12	42.5	10.5	22
GRS02954 SOIL 599054 6131535 0.06 -0.01 1260 0.19 93 17.5 60	GRS02953	SOIL	599156	6131535	0.1	-0.01	931	0.12	108	9.5	70
	GRS02954	SOIL	599054	6131535	0.06	-0.01	1260	0.19	93	17.5	60

SampleID	Туре	Easting	Northing	Ag	Au	Ва	Bi	Cu	Pb	Zn
GRS03009	SOIL	599156	6130333	0.07	-0.01	667	0.18	69	19.5	48
GRS03010	SOIL	599056	6130333	0.1	-0.01	1350	0.2	82	21	52
GRS03011	SOIL	598956	6130333	0.09	-0.01	1740	0.13	92.5	15.5	68
GRS03012	SOIL	598856	6130334	0.06	-0.01	1100	0.07	83	8	70
GRS03013	SOIL	598756	6130332	0.06	-0.01	693	0.11	85.5	10.5	80
GRS03014	SOIL	598656	6130332	0.04	-0.01	1220	0.08	73.5	9	46
GRS03015	SOIL	598556	6130332	0.07	-0.01	1190	0.16	91.5	17	88
GRS03016	SOIL	598456	6130333	0.06	-0.01	518	0.07	119	6.5	70
GRS03017	SOIL	598356	6130334	0.04	-0.01	748	0.06	45.5	6.5	54
GRS03018	SOIL	598255	6130334	0.08	-0.01	1880	0.21	93.5	31.5	66
GRS03019	SOIL	598154	6130332	0.06	-0.01	485	0.09	55	10.5	52
GRS03022	SOIL	598057	6130333	0.06	-0.01	274	0.15	37.5	20	36
GRS03023	SOIL	597956	6130334	0.04	-0.01	328	0.11	43	11	38
GRS03025	SOIL	597856	6130332	0.04	-0.01	216	0.07	60	6.5	68
GRS03026	SOIL	597757	6130333	0.03	-0.01	1060	0.12	44	15	40
GRS03027	SOIL	597656	6130734	0.02	-0.01	854	0.14	52	17.5	38
GRS03028	SOIL	597455	6130731	0.04	-0.01	830	0.08	49.5	10	44
GRS03029	SOIL	597556	6130735	0.04	-0.01	610	0.14	141	15.5	178
GRS03030	SOIL	597649	6130733	0.1	-0.01	519	0.15	42.5	35	92
GRS03031	SOIL	597755	6130733	0.04	-0.01	411	0.14	22	11.5	22
GRS03032	SOIL	597856	6130733	0.04	-0.01	323	0.19	38.5	25.5	28
GRS03033	SOIL	597956	6130732	0.06	-0.01	373	0.18	36	24	24
GRS03034	SOIL	598063	6130733	0.02	-0.01	678	0.14	73	15	44
GRS03035	SOIL	599957	6130732	0.06	-0.01	280	0.18	52.5	14.5	46
GRS03036	SOIL	599855	6130733	0.06	-0.01	306	0.06	63	6.5	70
GRS03037	SOIL	599755	6130734	0.07	-0.01	211	0.12	120	5.5	86
GRS03038	SOIL	599656	6130734	0.03	-0.01	113	0.08	86.5	3.5	72
GRS03039	SOIL	599555	6130732	0.03	-0.01	392	0.05	59.5	4	70
GRS03042	SOIL	599455	6130733	0.07	-0.01	582	0.09	51	8.5	46
GRS03043	SOIL	599356	6130732	0.06	-0.01	806	0.07	54	7	50
GRS03045	SOIL	599257	6130734	0.06	-0.01	473	0.06	66.5	5.5	50
GRS03046	SOIL	599155	6130734	0.08	-0.01	632	0.17	77.5	16.5	56
GRS03047	SOIL	599057	6130733	0.04	-0.01	1180	0.13	70	14.5	60
GRS03048	SOIL	598957	6130734	0.05	-0.01	1370	0.12	60.5	15	50
GRS03049	SOIL	598855	6130733	0.04	-0.01	1800	0.12	112	13	72
GR\$03050	SOIL	598756	6130732	0.05	-0.01	899	0.11	74.5	11.5	66
GRS03051	SOIL	598657	6130731	0.06	-0.01	1120	0.11	59	12.5	68
GRS03052	SOIL	598558	6130734	0.06	-0.01	894	0.11	53.5	11.5	68
GRS03053	SOIL	598454	6130734	0.07	-0.01	760	0.1	62	14	60
GRS03054	SOIL	598355	6130734	0.04	-0.01	650	0.12	48.5	12.5	42
GR\$03055	SOIL	598255	6130733	0.04	-0.01	562	0.09	58.5	8.5	48
GRS03056	SOIL	598157	6131133	0.05	-0.01	619	0.11	65	10	44
GR\$03057	SOIL	597854	6131134	0.05	-0.01	543	0.12	32	13.5	22
GRS03058	SOIL	597755	6131134	0.05	-0.01	562	0.13	56	16.5	30
GRS03059	SOIL	597656	6131132	0.05	-0.01	499	0.13	33	14.5	22

SampleID	Туре	Easting	Northing	Ag	Au	Ва	Bi	Cu	Pb	Zn
GRS03060	SOIL	597555	6131132	0.1	-0.01	585	0.15	53	16	28
GRS03061	SOIL	597454	6131134	0.06	-0.01	870	0.08	38	10	28
GRS03062	SOIL	597355	6131133	0.05	-0.01	1000	0.06	80.5	9.5	46
GRS03063	SOIL	597956	6131133	0.05	-0.01	683	0.09	49	12.5	34
GRS03064	SOIL	598053	6131132	0.05	-0.01	822	0.1	71	11.5	48
GRS03065	SOIL	598153	6131134	0.05	-0.01	707	0.11	64	11.5	50
GRS03066	SOIL	599856	6131132	0.09	-0.01	713	0.05	84	7	54
GRS03067	SOIL	599755	6131133	0.06	-0.01	346	0.06	121	6.5	70
GRS03068	SOIL	599656	6131132	0.04	-0.01	344	0.17	43	17.5	34
GRS03069	SOIL	599557	6131133	0.05	-0.01	581	0.15	57.5	12.5	54
GRS03070	SOIL	599456	6131133	0.06	-0.01	947	0.09	70.5	9.5	74
GRS03071	SOIL	599355	6131132	0.03	-0.01	554	0.16	61	13	52
GRS03072	SOIL	599255	6131133	0.04	-0.01	1020	0.08	84	10.5	68
GRS03073	SOIL	599155	6131132	0.06	-0.01	1080	0.13	80	13	72
GRS03074	SOIL	599057	6131132	0.05	-0.01	1310	0.12	75	13	74
GRS03075	SOIL	598956	6131133	0.04	-0.01	1320	0.09	82	10.5	70
GRS03076	SOIL	598857	6131133	0.04	-0.01	1630	0.11	43.5	12.5	60
GRS03077	SOIL	598756	6131133	0.05	-0.01	1920	0.11	68	14.5	66
GRS03078	SOIL	598656	6131132	0.04	-0.01	1090	0.16	74	18	40
GRS03079	SOIL	598554	6131133	0.05	-0.01	1800	0.16	66	11.5	48
GRS03080	SOIL	598454	6131133	0.05	-0.01	817	0.12	63.5	13	50
GRS03081	SOIL	598356	6131133	0.03	-0.01	919	0.07	45	8	44
GRS03082	SOIL	598255	6131133	0.04	-0.01	782	0.06	79	7.5	66
GRR0357	ROCK	599766	6130193	0.08	0.003	20	0.03	9.7	6.3	12
GRR0358	ROCK	599612	6130245	0.03	0.003	10	0.04	5.3	3.7	40
GRR0359	ROCK	599642	6130222	0.03	0.007	30	0.02	10	3.2	24
GRR0360	ROCK	599021	6130722	0.06	0.508	1540	0.03	38.3	6.5	44
GRR0361	ROCK	598895	6130370	0.04	0.409	140	0.08	4.2	13	4
GRR0362	ROCK	599531	6131845	0.4	0.005	560	0.04	71.3	3.3	22
GRR0363	ROCK	599902	6130873	0.02	0.003	10	-0.01	3.2	-0.5	2
GRR0364	ROCK	599266	6130749	0.02	0.003	60	0.06	18.9	5.8	12