

Diamond Drilling Highlights Narraburra REE Outside Existing Mineralisation

- Assay results are received for five diamond cored drill holes four of five holes intersected significant Rare Earth Elements ("REE"), suggesting a larger REE system occurs at the Project
- All REE intercepts are located outside the extent of previously identified REE mineralisation
- Significant intercepts include:
 - o GNBDD005 7.1m @ 1218 ppm Total Rare Earth Oxides ("TREO") from 38.9m
 - GNBDD006 1m @ 668 ppm TREO from 3m, and 2m @ 727 ppm TREO from 22m, and 21m
 @ 695 ppm TREO from 51m
 - GNBDD007 1.25m @ 582 ppm TREO from 3m, and 2.2 m @ 907 ppm TREO from 36m, and 22m @ 524 ppm TREO from 54m
 - GNBDD009 2m @ 1238 ppm TREO from 15m
- Higher levels of TREO in shallower weathered rock zones provide potential for low mining cost near-term extraction opportunities
- Recent results from diamond drilling suggest a larger REE system occurs at Narraburra in both weathered surficial regolith material and in the underlying fresh rock protolith
- Planning is underway for mineralogical and metallurgical test work, to determine optimum extraction pathways for both the weathered surficial mineralisation and the weathered rock material
- Results from a further 22 diamond core drillholes will be reported soon the majority of pending results are from drilling undertaken within the historical Mineral Resource Estimate ("MRE"), with the objective of upgrading the Mineral Resource Estimate to JORC (2012)

Godolphin Resources Limited (ASX: GRL) ("**Godolphin**" or the "**Company**") is pleased to advise it has received assay results for five diamond drill holes (GNBDD005, GNBDD006, GNBDD007, GNBDD008 and GNBDD009) from the Company's 27-hole diamond core inaugural MRE drill program at the Narraburra Rare Earth Element ("REE") and Rare Metals ("RM") Project ("Narraburra" or "the Project"), located 12km northeast of Temora in central west New South Wales (refer GRL's ASX announcement: 24 October 2022).

Management commentary:

Managing Director Ms Jeneta Owens said:

"These further five diamond drill holes are highly encouraging, given that all holes reported were drilled outside the extent of mineralisation as defined by previous explorers. These results show there is substantial weathered surficial REE mineralisation, and there is scope to extend the historically defined mineral resource. Further, the higher levels of TREO evident in the shallower weathered rock zones provide the potential for a low mining cost and near-term extraction opportunities, highlighting the considerable development potential at Narraburra.

Since the initial farm-in agreement, the Company has drilled a total of 31 diamond drill holes at the Project, which can be used to update the existing Mineral Resource Estimate to JORC (2012) standards. An additional 22 of these holes, including drill holes completed within the known mineral resource, will be reported soon. Concurrently, the Company will also commence metallurgical test work to start defining the optimum process flowsheet for the Narraburra REE mineralisation."

Godolphin Resources

ASX Code: **GRL** ABN: 13 633 779 950 A: Unit 13, 11-19 William Street, Orange NSW 2800 P: +61 2 6318 8144

E: info@godolphinresources.com.au www.godolphinresources.com.au

The Narraburra area was first explored for REE associated with the Devonian-aged Narraburra Granite. Significantly, it is listed as a Critical Minerals Project by the Critical Minerals Facilitation Office of the Australian Government's Department of Industry, Science, Energy and Resources and Australian Trade and Investment Commission¹ and highlights a major low-carbon metal opportunity in an established mining region.

To date, the Company's diamond drilling at Narraburra has intersected broad zones of REE mineralisation in both weathered surficial regolith material and in underlying fresh rock protolith material (refer GRL's ASX announcement: 11 November 2022). Most recent results from the additional five diamond drill holes have intersected further zones of REE outside the extent of previously identified REE mineralisation.

Figure 1: Location of the reported five diamond drillholes at the Narraburra Project.

Program overview and results:

All five drill holes (GNBDD005, GNBDD006, GNBDD007, GNBDD008 and GNBDD009) are located outside the extent of previously identified REE mineralisation. All holes have similar down-hole profiles, with thick weathered regolith above fresh rock protolith. Hole GNBDD005 intersected 46.35m of weathered material,

¹ <u>https://www.austrade.gov.au/ArticleDocuments/5572/Critical_Minerals_Projects_in_Australia.pdf.aspx</u>

GNBDD006 70.4m, GNBDD007 77.3m, GNBDD008 1.34m, and hole GNBDD009 13.9 m of weathered material. Pleasingly, four of the five drillholes intercepted rare earth mineralisation.

Total rare earth oxide ("TREO") values for all sample intervals have been calculated from assay results by summing the rare earth elements Cerium (Ce), Dysprosium (Dy), Erbium (Er), Europium (Eu), Gadolinium (Gd), Holmium (Ho), Lanthanum (La), Lutetium (Lu), Neodymium (Nd), Praseodymium (Pr), Samarium (Sm), Terbium (Tb), Thulium (Tm), Yttrium (Y) and Ytterbium (Yb). Oxide conversion factors have been applied to all results reported in this announcement (refer Table 1).

Drillhole GNBDD006 reported 21m averaging 695 ppm TREO from 51m downhole. Further REE mineralisation was intersected in this drill hole at shallow levels, including 1m averaging 668 ppm TREO from 3m and 2m averaging 727 ppm TREO from 22m. Drillhole GNBDD007 reported 22m averaging 524 ppm TREO from 54m downhole. Further REE mineralisation was intersected in this drill hole at shallow levels, including 1.25m averaging 582 ppm TREO from 3m and 2.2m averaging 907 ppm TREO from 36m. Further, drillhole GNBDD005 reported an intersection of 7.1m averaging 1218 ppm TREO from 38.9m downhole. Four of the five holes intersected REE mineralisation, with additional information and significant intersections tabulated below.

		Interest	luter al	5011	TREA	TREO includes		
Hole ID	Туре	(m)	(m)	EOH (m)	ppm	TLREO	THREO	
GNBDD005	Weathered	7.1	38.9 - 46	54.8	1218	1050	168	
GNBDD006	Weathered	1	3 - 4	92.7	668	423	245	
GNBDD006	Weathered	2	22 - 24	92.7	727	628	99	
GNBDD006	Weathered	21	51 - 72	92.7	695	430	265	
GNBDD007	Weathered	1.25	3 - 4.25	81.1	582	371	211	
GNBDD007	Weathered	2.2	36 - 38.2	81.1	907	530	377	
GNBDD007	Weathered	22	54 - 76	81.1	524	287	237	
GNBDD009	Fresh	2	15 - 17	25.1	1238	845	393	

 Table 1: Significant Rare Earth Element assay results² for drill holes GNBDD005, GNBDD006, GNBDD007

 and GNBDD009, September-October 2022 diamond drill program

² All REE mineralisation has been sampled and assayed in these holes. "TREO" is Total Rare Earth Oxide. "TLREO" is the proportion of TREO comprising light rare earth oxides. "THREO" is the proportion of TREO comprising heavy rare earth oxides. The composited drill intercepts above contain narrow discrete intervals of weakly mineralised material. A 500 ppm TREO lower cut-off grade has been adopted for mineralisation. No top cut has been applied. The stated intercepts are based on drill metres. Intervals may include small areas of core loss. See attached JORC Table 1 regarding drilling and analytical details, as well as calculations for conversions of REE assay results (ppm) to TREO, TLREO and THREO.

Figure 2: Cross sections of drillholes GNBDD005, GNBDD006, GNBDD007 and GNBDD009 showing TREO

Image: Core from GNBDD006 (between 59-64m) containing TREO of up to 695 ppm (weathered clay material zone)

Image: Core from GNBDD005 (between 39-43m) containing TREO of up to 1218 ppm (weathered zone)

ASX ANNOUNCEMENT

A total of thirty-one diamond cored drill holes has been drilled to date by Godolphin Resources at the Narraburra Project. Assays from a further twenty-two holes drilled during September 2022 and October 2022 remain outstanding, with assay results expected before the end of December 2022.

The results from these drill holes will support the re-estimation of the previously identified mineralisation Resources to JORC 2012 standards, which is expected to be provided in Q1 2023.

The mineralised zones with significant rare earth element mineralisation are found in both weathered material and fresh rock below the surficial weathered material. Further mineralogical and metallurgical test work is required to determine the extraction pathways for the various styles of mineralisation. Further test work will be undertaken to determine whether rare earth elements and rare metals can be extracted from the fresh rock zone.

<<ENDS>>

This market announcement has been authorised for release to the market by the Board of Godolphin Resources Limited.

For further information regarding Godolphin, please visit <u>https://godolphinresources.com.au/</u> or contact:

Jeneta Owens Managing Director +61 417 344 658 jowens@godolphinresources.com.au

Released through: Henry Jordan, Six Degrees Investor Relations, +61 431 271 538

About Godolphin Resources

Godolphin Resources (ASX: GRL) is an ASX listed resources company, with 100% controlled Australian-based projects in the Lachlan Fold Belt ("LFB") NSW, a world-class gold-copper province. A strategic focus on critical minerals and green metals through ongoing exploration and development in central west NSW. Currently the Company's tenements cover 3,400km² of highly prospective ground focussed on the Lachlan Fold Belt, a highly regarded providence for the discovery of REE, copper and gold deposits. Additional prospectivity attributes of GRL tenure include the McPhillamy's gold hosting Godolphin Fault and the Boda gold-copper hosting Molong Volcanic Belt.

Godolphin is exploring for REE, structurally hosted, epithermal gold and base-metal deposits and large, goldcopper Cadia style porphyry deposits and is pleased to announce a re-focus of exploration efforts for unlocking the potential of its East Lachlan tenement holdings, including increasing the mineral resource of its advanced Lewis Ponds Project. Reinvigoration of exploration efforts across the tenement package is the key to discovery and represents a transformational stage for the Company and its shareholders.

COMPLIANCE STATEMENTS: The information in this report that relates to reporting of Exploration Results, Mineral Resources or Ore Reserves is based on REE exploration information (excluding the RM information) reviewed by Mr Robin Rankin, a Competent Person who is a Member (#110551) of the Australasian Institute of Mining and Metallurgy (MAusIMM) and accredited since 2000 as a Chartered Professional (CP) by the AusIMM in the Geology discipline The exploration information was compiled by Goldolphin Resources Limited (GRL, see secondary CP Statement below). Mr Robin Rankin is an independent consultant to GR and provided this service to his Client GRL as paid consulting work in his capacity as Principal Consulting Geologist and operator of independent geological consultancy GeoRes. He and GeoRes are professionally and financially independent in the general sense and specifically of their Client and of the Client's project. This consulting was provided on a paid basis, governed by a (in this case an on-going engagement) scope of work and a fee and expenses schedule, and the results or conclusions reported were not contingent on payments. Mr Rankin has sufficient experience that is relevant to the REE style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person (CP) as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Rankin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr Rankin's CP Statement is given on the basis that GRL takes responsibility to a Competent Persons level (as given below) for the collection and integrity of the source data.

The actual REE exploration information in this report that relates to Exploration data, Sampling Techniques or Geochemical Assay Methodology is based on information compiled by Ms Jeneta Owens, Competent Person who is a Member of the Australian Institute of Geoscientists. Ms Owens is the Managing Director and full-time employee of Godolphin Resources Limited. Ms Owens has sufficient experience to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Owens consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Information in this announcement is extracted from reports lodged as market announcements referred to above and available on the Company's website <u>www.godolphinresources.com.au</u>.

The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 Diamond Drilling The 27-hole program employed diamond core drilling techniques to obtain representative material for geological logging and assays. All drill holes in this program were drilled at a vertical angle. Entire drill holes were sampled on a 1 m interval basis. A minor number of samples were sampled on a minimum of 0.5 m intervals and maximum of 3.0 m intervals where there were areas of core loss, or sampled to geological boundaries Each sample was cut in half, with a total of one half of each designated interval sent for assay analysis and the other half of the interval stored for future use in mineralogical and metallurgical testwork All intervals were logged and recorded in a GRL Narraburra-specific template and saved in the Company's database. Data includes: from and to measurements, colour, weathering, regolith profile, lithology, magnetic susceptibility, specific gravity, rock quality designation, rock strength characterisation including penetrometer readings, structures, and alteration. Magnetic Susceptibility measurements were taken at observed rock strength boundaries using a Penetrometer ST 315 instrument. The Competent Person ensured all sampling was to industry standard and in-line with previous sampling protocols. All relevant sampling details were continuously monitored and recorded.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details. 	 Diamond Drilling - diamond drilling (DD) with PQ core size using a triple tube. Multi-shot surveys were taken at the end of the hole whilst pulling the rods. All holes were drilled vertically. Holes were not orientated. Drill collar locations were pegged by GRL contractors prior to drilling using a hand held GPS. The collars of completed drill holes have been surveyed with a dGPS by a GRL geologist to an accuracy of less than 0.77m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 Diamond Drilling Drill core recovery was determined by comparing the drilled length of each interval with the physical core in the tray. The drill depth and drill run length data is recorded on the core blocks by the drilling company and checked by GRL geologists. GRL geologists attributed any core loss to the likely position it came from within a drill run. Diamond core recoveries are recorded in logging sheets and also via a digital photograph of core trays. Overall estimated recoveries were high. GNBDD005 recovered 97%, GNBDD006 recovered 92%, GNBDD007 recovered 96%, GNBDD008 recovered 99% and GNBDD009 recovered 96% of all drilled material Care was taken to ensure the core was representatively sampled in the broken or friable zones and that sample intervals aligned with core loss

🚬 ASX A	NNOUNCEMENT	
Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Diamond Drilling The drill core was geologically logged by a GRL geologist and geotechnically logged by a suitably trained technician. The log includes detailed datasets for: lithology, alteration, mineralisation, veins, structure, geotechnical logs, core recovery and magnetic susceptibility. The data is logged and quality checked by a qualified geologist and is suitable for use in any future geological modelling, resource estimation, mining and/or metallurgical studies
Sub-sampling techniques and sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Diamond Drilling Sample intervals were allocated by a GRL geologist using geological boundaries or material type boundaries as a guide. Sample lengths are not equal, but an average length of 1.0 m was obtained for this program. The PQ core was split using hand methods for weathered material, which involved using stainless steel tools to split the core in half lengthways. For hard material, a core saw was used to cut the sample in half. As such, core was sampled for assay as half-core samples. All core samples are treated individual assay samples irrespective of their sample interval. Care was taken to ensure the assigned sampled ID was unique, and that the corresponding drill hole and sample interval were accurately recorded on the sample log sheet. Routine assay samples employ a sequential 8-digit number. QAQC was employed. A standard and blank was inserted into the sample stream at about every 20th assay sample. Standards were quantified industry standards. Sample sizes are appropriate for the nature of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Diamond Drilling • All GRL samples were submitted to ALS laboratories in Orange. • The assay methods are appropriate for this style of mineralization. • The samples were sorted, wet weighed, dried then weighed again. Primary preparation involved crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which was pulverised in a vibrating pulveriser. • Samples were assayed using both a four-acid digest with ICP-MS analysis (ALS code ME-MS61, 0.25g sample) and with a lithium-borate fusion prior to acid dissolution and ICP-MS analysis (ALS code ME-MS61, 2g sample). All assay results discussed in this announcement reflect results received by lithium-borate fusion analysis. • The lab routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. • GRL also inserted QAQC samples into the sample stream as mentioned above. • All of the QAQC data has been statistically assessed and if required a batch or a portion of the batch may be re-assayed. (no re-assays required for the data in the release). • Verification of sampling and assaying.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) 	 The lab routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. GRL also inserted QAQC samples as mentioned above All of the QAQC data has been statistically assessed. GRL has undertaken its own further review of QAQC results of the ALS routine standards. The results are considered to be acceptable and suitable for reporting. All data and logging were recorded directly into field laptops. Visual validation as well as numerical validation were completed by two or more geologists. REE/RM oxides were calculated for all reported ICP-MS results. The oxides were calculated according to the following factors listed below:

ASX A	NNOUNCEMENT	
Criteria	JORC Code explanation	Commentary
	 protocols. Discuss any adjustment to assay data. 	 La2O3: 1.173 (i.e. ppm La x 1.1728 = ppm La2O3); CeO2: 1.2284; Pr6O11: 1.2082; Nd2O3: 1.1664; Sm2O3: 1.1596; Eu2O3: 1.1579; Gd2O3: 1.1526; Tb4O7: 1.1762; Dy2O3: 1.1477; Ho2O3: 1.1445; Er2O3: 1.1435; Tm2O3: 1.1421; Yb2O3: 1.1387; Lu2O3: 1.1371; Y2O3: 1.2699; Ga2O3: 1.3442; HfO2: 1.1793; Nb2O5: 1.4305; Rb2O: 1.0936; ZrO2: 1.3508 Total rare earth oxide is the industry standard and accepted form of reporting rare earth elements. TREO, TLREO, THREO as calculated as below TREO (total rare earth oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3 TLREO (total light rare earth oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 THREO (total heavy rare earth oxide) = Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 A handheld GPS was used to locate the drilling, with an averaged waypoint measurement: accuracy of less than 5 m. A DGPS was used after drilling to pick up the final collar location: accuracy of less than 0.77 m Coordinates used are WGS84 and transformed into Map Grid of Australia 1994 Zone 55 Hole paths have been systematically surveyed at 6 m intervals by the drill contractor.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Early-stage drilling program for Narraburra. Target is broad disseminated flat lying mineralisation above fresh igneous rock, as a result the drill density for this program is representative to indicate variability across the project area.
Orientation of data in	• Whether the orientation of	• Mineralisation is interpreted to be in flat lying layers associated with weathering profiles of the underlying granite. Vertical orientation of the drillholes was deemed suitable
relation to geological	sampling achieves unbiased	to target mineralisation of this style.
structure	sampling of possible structures and the extent to which this is known, considering the deposit type.	No significant bias is likely as a result of the pattern of intersection angles.
Sample security	• The measures taken to ensure	• For the program, care has been taken to have standard procedures for sample processing. They have been simple and industry standard to avoid sample bias.
	sample security.	All samples were collected and accounted for by GRL employees/consultants during drilling. All logging was done by GRL personnel. All samples were bagged into calico bags by GRL contractors under the instruction of GRL personnel.
		GRL personnel or contractors were present at the drill rig daily during the drilling
		• Diamond Drill core was geotechnically logged at the drill rig prior to transportation, and collected from the site and taken to the GRL shed in Orange for further processing.
		• The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received are routinely followed up and accounted for.

ASX A										
Criteria	JORC Code explanation	Commentary								
Audits or reviews	• The results of any audits or	Surveys, Assays, Geology, previous resource estimates were studied internally for factors likely to introduce bias, up or down.								
	reviews of sampling techniques and data.	No external audits have been done on this data.								
		An external review was conducted on this data by the Competent Person using core photographs and geological logs.								

-

Criteria	JORC Code explanation	Commentary
Mineral	• Type, reference	Narraburra
tenement and	name/number,	
land tenure	location and	• The Narraburra rare earth and rare metals project is located 12km to the north east of the township of Temora in NSW and has an elevation approximately 315 m above sea-level.
status	ownership including	The exploration rights to the project are granted via a JV agreement with EX9, a private entity.
	agreements or material issues with	• Earn-in terms – two tranche agreement allows Godolphin to progress to 51% ownership with \$1M exploration spend in the first two years of the JV agreement and 75% ownership through an additional \$2M in expenditure over the next two-year period
	tnird parties such as joint ventures,	• See ASX announcement by Godolphin Resources (ASX: GRL) on 2nd March 2022: "Godolphin Secures Farm-in on Advanced Rare Earth Element Project"
	partnerships,	• The Narraburra rare earth prospect, lies on Exploration License number 8420 and is held 100% by EX9.
	overriding royalties, native title interests,	The land is owned by private land holders northeast of the township of Temora
	historical sites,	The security deposit paid by EX9 for EL8420 was \$10,000.
	wilderness or	
	national park and	
	environmental	
	settings.	
	• The security of the	
	tenure held at the	
	time of reporting	
	along with any known	
	impediments to	
	obtaining a license to	
	operate in the area.	
Exploration	 Acknowledgment 	Narraburra
done by other	and appraisal of	See ASY approximate by Cadelphin Recourses (ASY: CPL) on 2nd March 2022, and Capital Mining Limited (ASY: CMV) on 0 November 2011
parties	exploration by other	
	parties.	Previous exploration includes airborne magnetic surveys, re-processing of public Aster data, geological mapping, mineralogical studies, preliminary metallurgical test work, with irregular
		wide-spaced RAB and RC drilling.
Geology	 Deposit type, 	<u>Narraburra</u>
	geological setting	Geology
	and style of	
	mineralization.	EL8420 is situated over part of the Narraburra Complex, comprising three suites of alkaline granite at the triple junction of the Tumut, Girilambone-Goonumbla and Wagga Zones, central
		southern New South Wales. EL8420 straddles the northern edge of the junction between the Gilmore Fault and the Parkes Thrust, both structures known for their relationship to precious
		and base metal mineralisation.
		The Narraburra rare earth element (REE) and rare metal (RM) mineralisation is hosted within the saprolite cap of highly fractionated Devonian alkaline and peralkaline granites.
		Mineralisation occurs within these alkaline units as concentric bands, wrapping around the southern and western side of the largest sub-unit in the Narraburra complex, the Bodingerra Granite.

ASX ANNOUNCEMENT Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

	X ANNOUNCE	MENT								
Criteria	JORC Code explanation	Commentary								
Drill hole Information	A summary of all information material to the understanding	Total drilling at Narraburra during this campaign was 1111.5 metres, comprising of: • 27 diamond holes • Drill hole information for drill holes currently reported from this drilling is presented in the table below								
	of the exploration	Hole ID	Hole Type	Lease ID	MGA55 East	MGA55 North	MGA_RL	Dip	MGA Azi	Depth m
	tabulation of the	GNBDD005	DD	EL8420	551216.205	6201875.116	329.38	-90	360	54.8
	following information	GNBDD006	DD	EL8420	551353.271	6202014.722	331.26	-90	360	92.7
	for all Material drill	GNBDD007	DD	EL8420	551311.818	6202274.288	325.71	-90	360	81.1
	holes:	GNBDD008	DD	EL8420	550680.968	6202100.43	330.27	-90	360	12.7
		GNBDD009	DD	EL8420	550894.971	6201893.96	325.72	-90	360	25.1
Data aggregation methods Relationship	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. These relationships 	 Weighted averages have Oxide equivalents have A 500 ppm TREO lowe kept to a minimum and A 50 ppm Hf, and Ga o Zr oxide cut-off grade h No top-cut has been ap 	ve been used for this a e been calculated as d er cut-off grade has be l only included where t has been applied to all oplied.	announcement. discussed above een applied to all re the grade carries. de has been applie I reported grades.	eported grades and considers the ed to all reported grades. A 100 p	geology and material	types included in ea	ach mine	ralised interval	Dilution has been
between	I nese relationships are particularly		in average of -90 dec	amation (i.e. vertical	1)					
mineralization	important in the	The mineralisation has bee	en interpreted as relat	ively flat lying						
widths and	reporting of									

150				
	-			
	-			
		_	ч	
-				

ASX ANNOUNCEMENT

JORC Code explanation	Commentary
Exploration Results.	
If the geometry of the	
mineralisation with	
respect to the drill	
hole angle is known,	
its nature should be	
reported.	
Appropriate maps	Diagrams pertaining to this drilling program can be found in the body of the attached announcement.
and sections (with	
scales) and	
tabulations of	
intercepts should be	
included for any	
significant discovery	
being reported These	
should include, but	
not be limited to a	
plan view of drill hole	
collar locations and	
appropriate sectional	
views.	
Where	These are results from the second round of drilling completed at Narraburra by GRL
comprehensive	All significant drill intercepts of mineralisation in these drill holes have been assayed and reported
reporting of all	
Exploration Results	
is not practicable,	
representative	
reporting of both low	
and high grades	
and/or widths should	
be practiced to avoid	
misleading reporting	
of Results.	
Other exploration	See ASX announcements by Godolphin Resources (ASX: GRL) on 2nd March 2022, and Godolphin Resources (ASX:GRL) on 11th November 2022, and Capitol Mining Limited (ASX:
data. if meaningful	CMY) on 9 November 2011
and material, should	
be reported includina	
(but not limited to):	
qeological	
observations:	
	 JORC Code explanation Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Results. Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; acaptive is appropriate sections); acaptive is and plan view of including (but not limited to): geological observations;

🚬 A	SX ANNOUNCE	MENT
Criteria	JORC Code explanation	Commentary
	results; geochemical	
	survey results; bulk	
	samples – size and	
	method of treatment;	
	metallurgical test	
	results; bulk density,	
	groundwater,	
	geotechnical and	
	rock characteristics;	
	potential deleterious	
	or contaminating	
	substances.	
Further work	The nature and scale	Assays for a further 22 diamond holes from the 27-diamond drill hole program are currently in progress
	of planned further	These further assay results are planned to be utilised to complete a JORC-2012 resource calculation
	work (eg tests for	Further exploration activities are currently under assessment
	lateral extensions or	
	depth extensions or	
	large-scale step-out	
	drilling).	

Appendix 2: Table of Drill sample results discussed in this ASX release. (Note: This is a complete list of samples, but not of all the elements. A complete list can be requested and supplied pending GRL Board approval).

SampleID) Type	Hole_ID	From_m	To_m	Ce_ppm	Dy_ppm	Er_ppm	Eu_ppm	Gd_ppm	Ho_ppm	La_ppm	Lu_ppm	Nd_ppm	Pr_ppm
GRD0784	6 DDH	GNBDD005	0	1	36.3	5.03	4.01	0.54	3.75	1.21	18.8	0.76	16.5	4.41
GRD0784	7 DDH	GNBDD005	1	2	31.8	6.12	4.72	0.47	4.25	1.42	17.8	0.86	15	4.14
GRD0784	8 DDH	GNBDD005	3	4	40.4	7.62	6	0.5	5.18	1.74	21.5	1.02	18.5	5.01
GRD0784	9 DDH	GNBDD005	4	5	55.2	11.75	7.71	0.65	8.24	2.47	26.9	0.99	26	7.1
GRD0785	0 DDH	GNBDD005	5	6	64.2	9.78	6.86	0.76	7.95	2.13	34.8	1.09	31.9	8.51
GRD0785	1 DDH	GNBDD005	6	7.25	15.8	5.39	5.29	0.23	3.45	1.47	12.4	0.94	8.3	2.33
GRD0785	2 DDH	GNBDD005	7.25	8.3	9.8	3.86	3.75	0.1	1.54	1.02	3	0.74	2.4	0.66
GRD0785	3 DDH	GNBDD005	8.3	9.2	11.6	4.48	4.07	0.16	1.91	1.09	2.7	0.76	2.8	0.69
GRD0785	4 DDH	GNBDD005	9.2	10.15	69.7	4.89	3.74	0.64	4.66	1.13	24.2	0.72	28.9	7.3
GRD0785	5 DDH	GNBDD005	10.15	11.25	18.2	3.45	3.16	0.18	1.88	0.87	3.6	0.65	4.2	1.12
GRD0785	6 DDH	GNBDD005	11.25	12.5	26.6	3.3	3.06	0.13	1.98	0.83	3.5	0.57	4.4	1.08
GRD0785	7 DDH	GNBDD005	12.5	13.5	14.2	3.09	3 12	0.09	13	0.8	2.3	0.72	2.3	0.53
GRD0785	8 DDH	GNBDD005	13.5	14.5	82	3.38	3.26	0.06	1 43	0.83	1.8	0.67	2	0.46
GRD0785		GNBDD005	14.5	15 55	10	3.03	2.84	0.06	1.10	0.75	0.0	0.6	13	0.10
GRD0786		GNBDD005	15 55	16.65	6.4	3.74	3.26	0.00	1.7	0.73	0.5	0.0	1.0	0.01
CPD0786		GNBDD005	16.65	17.6	0.4	6.48	5.40	0.06	3.16	1.6	0.0	0.0	12	0.21
CPD0786	ווסט וי שחח נ י	GNBDD005	17.6	18.8	9.4	/ 78	1.43	0.00	2.10	1.0	1.8	0.03	1.2	0.20
GRD0700		CNRDD005	17.0	10.0	122	4.70	6.42	0.05	2.30	1.10	1.0	1.09	25.1	10.5
GRD0700		GNBDD005	10.0	19.0	105	9.10	0.42	0.40	7.24	1.94	40	1.00	30.1	10.5
GRD0700		GINBDD005	19.0	20.9	120	9.00	0.04	0.45	7.91	2	40	1.07	30.0	10.45
GRD0786		GNBDD005	20.9	21.9	120.5	12.35	8.10	0.53	9.71	2.54	40.0	1.32	37.3	10.45
GRD0786	6 DDH	GNBDD005	21.9	23	21.5	0.00	5.4	0.13	3.68	1.03	5.5	1.02	4.9	1.3
GRD0786	9 DDH	GNBDD005	23	24	22.8	6.76	5.59	0.1	3.68	1.62	4	0.99	3.8	0.9
GRD0787	O DDH	GNBDD005	24	25	54.6	4.31	3.9	0.06	2.21	1.08	5.9	0./1	4.9	1.36
GRD0787	1 DDH	GNBDD005	25	26	36.7	5.2	4.13	0.12	2.83	1.2	9.1	0.75	7.1	1.86
GRD0787	2 DDH	GNBDD005	26	27	36.7	5.36	4.46	0.07	3.13	1.24	7.8	0.84	5.4	1.46
GRD0787	3 DDH	GNBDD005	27	28	43.8	7.05	5.69	0.15	4.1	1.66	10.2	1	8.4	2.21
GRD0787	4 DDH	GNBDD005	28	29	49.8	8.88	7.01	0.33	6.99	2.08	26.7	1.12	23.7	6.28
GRD0787	5 DDH	GNBDD005	29	30	51.6	6.21	5.32	0.16	3.91	1.54	11.8	0.98	9.7	2.6
GRD0787	6 DDH	GNBDD005	30	31	43.1	6.43	5.28	0.13	3.65	1.6	10.4	0.96	8.7	2.26
GRD0787	7 DDH	GNBDD005	31	32	46.4	6.3	5.43	0.1	3.75	1.61	9.8	0.86	8.5	2.19
GRD0787	8 DDH	GNBDD005	32	33	44.4	7.32	6	0.22	5.04	1.76	20.6	0.96	16.9	4.7
GRD0787	9 DDH	GNBDD005	33	34	29.2	8.5	6.66	0.34	6.2	2.02	29.3	1.06	23.4	6.35
GRD0788	0 DDH	GNBDD005	34	35	42.2	7.85	5.84	0.4	6.45	1.8	38	0.91	30.8	8.39
GRD0788	1 DDH	GNBDD005	35	36	21.7	7.18	5.85	0.26	5.34	1.7	31.5	0.98	24.5	6.74
GRD0788	2 DDH	GNBDD005	36	37	54	7.86	5.85	0.23	5.67	1.88	27.4	0.99	21.1	5.71
GRD0788	3 DDH	GNBDD005	37	38	54.4	7.61	5.92	0.27	5.67	1.81	28.6	0.98	23	6.08
GRD0788	4 DDH	GNBDD005	38	38.9	108	8.5	6.73	0.29	6.16	2.03	32	0.96	25	6.92
GRD0788	7 DDH	GNBDD005	38.9	40	506	9.79	8.06	0.31	6.65	2.33	34.8	1.28	27	7.55
GRD0788	8 DDH	GNBDD005	40	41	248	8.07	7.56	0.17	4.61	1.98	16	1.24	13	3.63
GRD0788	9 DDH	GNBDD005	41	42	1360	8.3	7.47	0.24	4.88	2.12	15.4	1.19	13.4	3.52
GRD0789	0 DDH	GNBDD005	42	43	1040	10.55	8.91	0.42	7.53	2.62	30.1	1.36	24.8	6.77
GRD0789	1 DDH	GNBDD005	43	44	1125	12.4	10.1	0.43	7.7	2.97	27.6	1.64	24.9	7.06
GRD0789	2 DDH	GNBDD005	44	45	1125	13.7	10.85	0.46	9	3.26	34.9	1.78	31.6	9.27
GRD0789	3 DDH	GNBDD005	45	46	284	16.25	11.95	0.74	12.05	3.64	73.4	1.9	60.7	17.35
GRD0789	4 DDH	GNBDD005	46	46.7	86.9	13.8	9.02	0.95	13.6	2.87	105.5	1.36	88.7	25.6
GRD0789	5 DDH	GNBDD005	46.7	48	82.3	9.64	6.98	0.53	8.31	2.25	50.1	1.15	40	11.6
GRD0789	6 DDH	GNBDD005	48	48.85	72.8	9.91	7.24	0.52	8.39	2.09	50.8	1.13	42.6	12.15
GRD0789	7 DDH	GNBDD005	48 85	49.85	66.4	9.68	7 25	0.51	8 17	2 11	48.2	12	39.2	11
GRD0789	8 DDH	GNBDD005	49.85	.5.00	70.1	11 45	8.08	0.66	10.15	2.55	66.8	1 26	52.4	14 65
GRD0780	9 DDH	GNBDD005	51	52	70.8	9.22	6.78	0.00	7 78	2.00	44.9	1 14	36	10.1
GRD0703	0 DDH	GNBDD005	52	52	70.0	9.22 8.70	6.88	0.45	7 31	2.00	12.7	1.14	22.8	Q 1
GRD0790		GNBDD005	52	53.85	72.7	8.4	6.02	0.00	6.08	1 70	38.7	0.04	31.2	9.1
GRD0790	1 UUU 1 UUU	GNBDD005	53 SE	51.00	78.6	0.4 8.61	6.11	0.42	7 16	1.79	30.7	0.90	20.2	0.0
GRD0/90	2 UUN	311000000	55.00	J4.0	70.0	0.01	0.11	0.5	7.10	1.54	50.7	0.37	25.0	0.04

GNBDD005 – Narraburra Prospect

GNBDD005 continued – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Y_ppm	Yb_ppm	Ga_ppm	Hf_ppm	Nb_ppm	Rb_ppm	Zr_ppm
GRD07846	DDH	GNBDD005	0	1	33.7	5.26	12.3	18.95	19	118	665
GRD07847	DDH	GNBDD005	1	2	37.2	5.39	14.2	18.6	24.9	129.5	627
GRD07848	DDH	GNBDD005	3	4	46.9	6.79	17.8	20.2	32.6	146.5	664
GRD07849	DDH	GNBDD005	4	5	64.4	7.25	16.6	15.15	38.9	104	495
GRD07850	DDH	GNBDD005	5	6	62.4	7.14	16.6	17.05	27.4	58.2	519
GRD07851	DDH	GNBDD005	6	7.25	43.1	6.55	30	19.5	46.9	28.5	557
GRD07852	DDH	GNBDD005	7.25	8.3	28.8	5.1	29.2	18.7	49.4	9.7	504
GRD07853	DDH	GNBDD005	8.3	9.2	28.5	5.24	31.3	20.8	55.3	6.1	567
GRD07854	DDH	GNBDD005	9.2	10.15	30.1	4.38	24	14.4	35.2	4.8	416
GRD07855	DDH	GNBDD005	10.15	11.25	23.1	3.91	25.1	13.15	33.9	5.3	395
GRD07856	DDH	GNBDD005	11.25	12.5	25.3	4.13	24.9	15.75	33.1	8.8	453
GRD07857	DDH	GNBDD005	12.5	13.5	21.2	4.33	25	17.8	33.2	3.6	509
GRD07858	DDH	GNBDD005	13.5	14.5	23.1	4.56	32.5	14.85	41.6	3.6	434
GRD07859	DDH	GNBDD005	14.5	15.55	21.7	3.62	29.7	11.35	29.8	2.9	304
GRD07860	DDH	GNBDD005	15.55	16.65	26.9	4.23	28.3	8.03	20.4	3	211
GRD07861	DDH	GNBDD005	16.65	17.6	47.3	6.51	29.3	7.33	22	4.9	191
GRD07862	DDH	GNBDD005	17.6	18.8	34.2	4.77	27.1	6.81	21.3	4.1	180

ASX ANNOUNCEMENT

GRD07863	DDH	GNBDD005	18.8	19.8	56.6	7.04	29.1	8.67	25.2	6.4	228
GRD07864	DDH	GNBDD005	19.8	20.9	60.3	7.14	26.1	7.54	23.7	5.7	195
GRD07867	DDH	GNBDD005	20.9	21.9	77.3	9.01	28.8	8.16	27.1	6.2	211
GRD07868	DDH	GNBDD005	21.9	23	47.9	6.71	23.8	6.73	20.8	4.7	180
GRD07869	DDH	GNBDD005	23	24	48.3	6.59	23	6.27	20.4	4.7	165
GRD07870	DDH	GNBDD005	24	25	31.2	4.59	22.7	6.39	19.75	5	163
GRD07871	DDH	GNBDD005	25	26	37.1	5.19	24.9	7.69	24.5	5.5	189
GRD07872	DDH	GNBDD005	26	27	38.5	5.19	24.7	6.72	24	4.7	174
GRD07873	DDH	GNBDD005	27	28	51.9	6.9	28	7.82	27.5	5.2	209
GRD07874	DDH	GNBDD005	28	29	64.4	7.76	30.2	8.12	29.6	6.6	218
GRD07875	DDH	GNBDD005	29	30	49.8	6.08	26	6.94	25	7.1	188
GRD07876	DDH	GNBDD005	30	31	50.7	6.09	26	6.86	25	6.1	181
GRD07877	DDH	GNBDD005	31	32	52.3	6.04	26.1	7.05	24.8	5.4	196
GRD07878	DDH	GNBDD005	32	33	57.2	6.58	25.6	6.86	23.4	4.4	186
GRD07879	DDH	GNBDD005	33	34	64.8	6.77	25.6	6.61	21.5	4.5	174
GRD07880	DDH	GNBDD005	34	35	59.2	6.24	24.4	6.74	21.6	4.7	184
GRD07881	DDH	GNBDD005	35	36	56.1	6.5	24.4	7.19	21.9	7.5	192
GRD07882	DDH	GNBDD005	36	37	59.9	6.7	24.1	7.17	22.4	9.4	184
GRD07883	DDH	GNBDD005	37	38	59	6.49	23.2	6.41	19.3	12.5	174
GRD07884	DDH	GNBDD005	38	38.9	66.2	6.91	24.5	6.67	20.6	22.2	178
GRD07887	DDH	GNBDD005	38.9	40	80.3	8.71	23.9	7.07	21.7	20.8	180
GRD07888	DDH	GNBDD005	40	41	72.2	8.58	24.4	6.64	21.5	76.4	160
GRD07889	DDH	GNBDD005	41	42	72	8.47	22.2	6.79	21.8	205	163
GRD07890	DDH	GNBDD005	42	43	89.1	9.43	21.3	5.81	19.85	222	159
GRD07891	DDH	GNBDD005	43	44	98.9	11.15	20.6	6.09	18.35	217	156
GRD07892	DDH	GNBDD005	44	45	106	12.5	21.5	6.25	20.1	240	160
GRD07893	DDH	GNBDD005	45	46	116.5	13.35	20.9	6.18	19.4	220	158
GRD07894	DDH	GNBDD005	46	46.7	85.7	9.45	19	5.44	17.7	202	142
GRD07895	DDH	GNBDD005	46.7	48	65.1	7.99	18.2	5.26	16.2	202	137
GRD07896	DDH	GNBDD005	48	48.85	61.7	7.86	17.6	4.52	15.15	185.5	119
GRD07897	DDH	GNBDD005	48.85	49.85	64.9	8.11	18.3	5.14	16	199.5	127
GRD07898	DDH	GNBDD005	49.85	51	72.3	9.02	19.4	5.72	18.3	209	145
GRD07899	DDH	GNBDD005	51	52	61.5	7.68	17.9	4.96	16.3	203	132
GRD07900	DDH	GNBDD005	52	53	64.9	7.17	17.8	5.67	15.6	199	139
GRD07901	DDH	GNBDD005	53	53.85	59	6.52	18.3	5.65	16.35	200	140
GRD07902	DDH	GNBDD005	53.85	54.8	61.3	6.99	18.3	5.68	18.6	196	136

GNBDD006 – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Ce_ppm	Dy_ppm	Er_ppm	Eu_ppm	Gd_ppm	Ho_ppm	La_ppm	Lu_ppm	Nd_ppm	Pr_ppm
GRD07904	DDH	GNBDD006	0	1	33.8	4.85	4.41	0.4	3.04	1.18	17	0.85	13.6	3.83
GRD07905	DDH	GNBDD006	1	2	33.7	4.76	3.8	0.54	3.57	1.1	19.5	0.58	16	4.11
GRD07906	DDH	GNBDD006	2	3	128.5	10.25	6.25	1.3	7.99	2.1	37.4	1.06	36	9.61
GRD07907	DDH	GNBDD006	3	4	148.5	20.7	13.15	2.76	21.1	4.36	81.1	1.67	86.4	21.6
GRD07908	DDH	GNBDD006	4	5	88.8	10.55	7.63	1.15	8.64	2.44	37.2	1.28	38.3	10
GRD07909	DDH	GNBDD006	5	6	75.6	13 25	10 15	1 14	9.22	3.01	28.9	1 64	33.8	8 75
GRD07910B	DDH	GNBDD006	6	7	19.8	9.26	7.45	0.54	5.51	2 16	13.7	1.01	16.7	4.08
CRD07010D		CNRDD000	7	0	45.0	1.20	1.45	0.04	1.65	1.05	2.0	0.94	2.7	4.00
GRD07911	DDH	GNDDD000	1	0	9.4	4./	4.04	0.08	1.03	1.20	2.0	0.04	2.1	0.04
GRD07912	DDH	GNBDD006	8	9	23.6	5.04	4.89	0.1	1.79	1.28	3	0.89	2.3	0.61
GRD07913	DDH	GNBDD006	9	10	7.5	5.51	5.14	0.14	1.86	1.44	2.1	0.96	2.2	0.51
GRD07914	DDH	GNBDD006	10	11	6.4	5.01	4.77	0.12	1.8	1.34	1.7	0.89	1.6	0.44
GRD07915	DDH	GNBDD006	11	13	7.9	5.15	5.02	0.12	1.48	1.3	2.5	0.94	2.1	0.51
GRD07916	DDH	GNBDD006	13	15	15.2	4.58	4.63	0.06	1.38	1.21	1.8	0.95	1.3	0.39
GRD07917	DDH	GNBDD006	15	16	15.5	4.68	4.93	0.06	1.46	1.3	1.3	1	1.3	0.36
GRD07918	DDH	GNBDD006	16	17	10.9	5.08	4.83	0.06	1.46	1.3	1.7	1.02	1.3	0.36
GRD07919	DDH	GNBDD006	17	18	20.7	5 54	5.62	0.09	15	1 46	17	1 22	14	0.41
GRD07920	DDH	GNBDD006	18	10	22.8	7 14	7.5	0.08	2 01	1 9/	2.6	1.53	2	0.53
GPD07020		CNRDD006	10	20	20.3	7.46	7 73	0.07	2.01	2.02	2.6	1.00	2	0.00
00007921	DDII	GNDDD000	13	20	29.5	7.40	5.70	0.07	2.13	2.02	2.0	0.05	2	0.00
GRD07922	DDH	GNBDD006	20	21	20.2	5.91	5.72	0.05	1.80	1.50	1.1	0.95	1.0	0.37
GRD07925	DDH	GNBDD006	21	22	138.5	5.49	5.63	0.05	1.59	1.46	1.1	1.07	1.6	0.33
GRD07926	DDH	GNBDD006	22	23	689	6.74	6.27	0.09	1.87	1.76	1	1.06	2.1	0.54
GRD07927	DDH	GNBDD006	23	24	375	5.91	5.8	0.08	1.84	1.58	1.1	0.91	1.5	0.38
GRD07928	DDH	GNBDD006	24	25	28.6	6.77	6.09	0.11	3.3	1.7	8.2	0.89	6.4	1.81
GRD07929	DDH	GNBDD006	25	26	30.3	6.84	6.48	0.1	2.78	1.89	8.6	0.76	6.7	1.82
GRD07930	DDH	GNBDD006	26	27	97	7.88	6.09	0.31	5.15	1.82	28.5	0.85	23.5	6.56
GRD07931	DDH	GNBDD006	27	28	65.9	7.55	5.64	0.28	5.3	1.76	29	0.86	21.9	6.33
GRD07932	DDH	GNBDD006	28	29	52.2	7 77	61	0.23	5 14	1 78	23.9	0.95	19.4	5.4
GPD07032		CNRDD006	20	30	01.5	13.3	8.87	0.51	11.05	2.87	/8 1	1.00	10.4	11 1
GRD07024	חסס	GNEDDOOG	20	21	00.0	10.5	7.00	0.01	6.51	2.07	2/ 0	1.20	91.4	5.57
GRD07934	DDH	GNBDD000	30	21	99.2	10.15	7.92	0.20	0.01	2.34	24.9	1.20	21.4	0.07
GRD07935	DDH	GNBDD006	31	32	53.6	9.05	7.99	0.19	5.22	2.29	18.0	1.38	14.4	3.82
GRD07936	DDH	GNBDD006	32	33	67.7	8.91	7.97	0.21	5.52	2.24	23.7	1.49	17.4	4.67
GRD07937	DDH	GNBDD006	33	34	41	8.87	7.84	0.15	4.81	2.27	17.9	1.46	12.9	3.38
GRD07938	DDH	GNBDD006	34	35	58.2	8.77	8.36	0.15	4.39	2.28	11	1.58	9.5	2.28
GRD07939	DDH	GNBDD006	35	36	32.2	8.61	8.32	0.1	3.72	2.25	8.4	1.59	7	1.68
GRD07940	DDH	GNBDD006	36	37	25.8	12.9	10.5	0.29	8.52	3.18	25.9	1.88	23.4	5.84
GRD07941	DDH	GNBDD006	37	38	24.1	20.1	14.45	0.55	14.9	4.49	46.2	2.43	43.7	11
GRD07942	DDH	GNBDD006	38	40	19.3	10 45	8 74	0.23	6.28	2 58	18	1 76	15.6	4 16
GRD07945	ррн	GNBDD006	40	/1	22.9	7 95	7.96	0.11	3.23	2.00	8	1.68	7.4	1.16
CRD07345	ווסס	CNRDD000	40	40	22.5	7.00	7.00	0.11	0.20	2.13	47	1.00	1.4	1.70
GRD07940	DDH	GNBDD000	41	42	20.9	7.13	7.95	0.15	2.4	2.07	4./	1.74	7.0	1.01
GRD07947	DDH	GNBDD006	42	42.8	24.4	9.15	9.85	0.15	3.97	2.46	8.9	2.12	7.8	1.98
GRD07948	DDH	GNBDD006	42.8	43.8	10.9	10.4	10.85	0.17	5.05	2.83	13.9	2.16	12.7	3.3
GRD07949	DDH	GNBDD006	43.8	44.7	33	9.41	8.84	0.12	4.36	2.36	6.7	1.7	6.3	1.41
GRD07950	DDH	GNBDD006	44.7	45.8	25.5	15.25	10.9	0.29	10.55	3.45	21.2	1.66	19.4	4.72
GRD07951	DDH	GNBDD006	45.8	46.9	25.3	9.69	9.09	0.18	5.29	2.43	19.3	1.68	16.5	4.4
GRD07952	DDH	GNBDD006	46.9	48.2	18.8	10.65	9.37	0.27	6.2	2.57	29.9	1.66	25	6.69
GRD07953	DDH	GNBDD006	48.2	49	65.8	15.95	11.95	0.68	13.15	3.49	71.3	1.74	63.3	17.6
GRD07954	DDH	GNBDD006	49	50	52.9	10.1	9.36	0.3	5.83	2.48	26	1.64	22.3	6.15
GRD07955	DDH	GNBDD006	50	51	206	10.9	10.8	0.24	5 19	2.86	17.3	1 92	15	3.82
GPD07056	ррн	CNRDD006	51	52	457	15.05	1/ 05	0.47	0.13	3.07	45.2	2.25	30.8	11.05
CRD07057		CNRDD000	50	52	520	24.2	17.6	0.04	17.65	5.57		2.25	77.0	11.00
CDD07957		CNIDDD000	52	55	100	24.0	16.05	0.04	17.00	5.09	00	2.00	76.0	22.5
GRD07936	DDH	GNBDD000	53	04	103	23.2	10.00	0.93	17.40	5.08	30	2.19	70.9	21.4
GRD0/959	DDH	GINDUUU0	54	55	201	17.15	13.45	0.70	12.2	3.92	12.0	1.92	0.00	10.9
GRD07960	DDH	GNBDD006	55	56	144	21.6	16.05	1.07	17.3	4.93	105	2.2	87.3	24.8
GRD07961	DDH	GNBDD006	56	57	110	19.1	14.05	0.96	15.25	4.11	98.5	1.84	76.9	22.2
GRD07962	DDH	GNBDD006	57	58	92.3	22	14.45	1.08	18.9	4.67	117	1.9	93.3	26
GRD07965	DDH	GNBDD006	58	59	95.2	18	13.2	0.88	13.9	4	94.5	1.88	72.9	21
GRD07966	DDH	GNBDD006	59	60	69.6	19.3	14.45	0.94	15.05	4.28	95.7	2.03	77.9	21.3
GRD07967	DDH	GNBDD006	60	61	88.2	27.7	16.25	1.72	26.8	5.46	176.5	2.08	139	39.5
GRD07968	DDH	GNBDD006	61	62	85.2	19.25	14.05	0.94	15.45	4.26	99.2	2.01	76.2	21.9
GRD07969	DDH	GNBDD006	62	63	90.2	17.35	13.1	0.9	13.65	3.84	94.5	1.88	71.6	20.3
GRD07970	DDH	GNBDD006	63	64	82.4	18.85	12.9	1.03	15.65	4 02	101.5	1.86	79	22.5
GRD07074		GNRDD006	6.0	65	QE 1	17.65	12.0	0.03	1/1 05	7.02	Q0 5	2.00	70.0	10 /
GD07072	חסס	CNRDD000	65	60	70.0	10.0	12.0	1 10	14.00	4 05	111 5	1.02	06 5	04.4
GRD07972	DDH	GNBDD000	00	00	10.0	19.0	10.9	1.12	10.60	4.20	111.0	1.91	00.0	24.4
GRD07973	DDH	GNBDD006	00	07	101.5	22.0	10.20	1.23	19.45	4.90	121.5	2.13	91.2	25.5
GRD0/974	DDH	GNBDD006	67	68	67.9	24.3	16.3	1.54	21.5	5.16	146.5	2.07	115.5	32.3
GRD07975	DDH	GNBDD006	68	69	92.4	22.2	16.65	1.12	17.2	4.97	111	2.21	85.3	24.1
GRD07976	DDH	GNBDD006	69	70	70.3	20.4	13.1	1.26	17.8	4.31	113	1.65	86.8	23.8
GRD07977	DDH	GNBDD006	70	71	63.7	21.2	13.2	1.33	19.55	4.46	119.5	1.54	92.9	25.2
GRD07978	DDH	GNBDD006	71	72	73	19.5	13.25	1.19	17.75	4.31	106.5	1.68	81.9	22.7
GRD07979	DDH	GNBDD006	72	73	66.1	15.25	11.35	0.8	12.3	3.31	76.7	1.46	58.6	16.6
GRD07980	DDH	GNBDD006	73	74	49.3	13.9	10.15	0.84	11.4	3.1	68.5	1.24	52.8	15
GRD07981	DDH	GNBDD006	74	75	45.1	11.6	8 53	0.65	9	2 61	56.6	1 17	43.1	12 15
GRD07082		GNRDD006	75	76	58.5	12.2	10.2	0.00	10.35	2.01	65.0	1 37	10.1	1/ 25
CDD07502		CNRDD000	76	70	10.0	11 15	0.2	0.03	0.00	0.1	55.T	1.57	20.2	14.20
GRD0/903		CNIDDD000	/0	70	40.0	11.10	0.0	0.01	0.01	2.09	54	1.14	39.3	11.0
GRD0/986	DDH	GNBDD006	//	/8	50.4	10.9	8.64	0.63	9	2.59	56.4	1.12	42.7	12
GRD07987	DDH	GNBDD006	/8	/9	62.7	9.51	1.57	0.53	7.01	2.24	43.7	1	32.5	9.26
GRD07988	DDH	GNBDD006	79	80	62.4	9.71	7.69	0.57	6.59	2.31	40.2	1	29.5	8.62
GRD07989	DDH	GNBDD006	80	81	59.9	9.66	7.31	0.54	6.39	2.14	39.9	0.98	29.9	8.36
GRD07990	DDH	GNBDD006	81	82	41.3	7.85	6.2	0.49	5.75	1.76	42.2	0.77	30.4	8.66

GNBDD006 continued – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Ce_ppm	Dy_ppm	Er_ppm	Eu_ppm	Gd_ppm	Ho_ppm	La_ppm	Lu_ppm	Nd_ppm	Pr_ppm
GRD0799	1 DDH	GNBDD006	82	83	56.7	8.6	6.4	0.44	6.13	1.92	37.6	0.85	27.4	8.33
GRD0799	2 DDH	GNBDD006	83	84	58.3	8.12	6.32	0.42	5.84	1.88	35.1	0.88	26.9	7.53
GRD0799	3 DDH	GNBDD006	84	85	58.2	8	6.12	0.37	5.36	1.78	30.7	0.82	22.6	6.56
GRD0799	4 DDH	GNBDD006	85	86	61.9	6.44	4.68	0.33	4.58	1.4	29.8	0.65	23	6.54
GRD0799	5 DDH	GNBDD006	86	87	59.1	7.24	5.57	0.42	5.15	1.7	33.2	0.82	24.8	7.17
GRD0799	6 DDH	GNBDD006	87	88	61.4	7.39	5.56	0.45	5.21	1.64	32	0.77	23.3	6.91
GRD0799	7 DDH	GNBDD006	88	89	47.9	6.5	4.84	0.48	5.12	1.48	35.5	0.68	25.4	7.51
GRD0799	8 DDH	GNBDD006	89	90	65.9	7.72	5.3	0.46	6.23	1.61	41.6	0.79	30.8	8.85
GRD0799	9 DDH	GNBDD006	90	91	71.6	8.35	5.72	0.4	6.57	1.83	40.2	0.87	31.1	8.75
GRD0800	0 DDH	GNBDD006	91	92	65.5	6.1	4.5	0.43	4.93	1.36	34.2	0.68	23.8	7.12
GRD0800	1 DDH	GNBDD006	92	92.7	80.3	6.72	4.75	0.41	5.3	1.44	37.3	0.72	27.1	7.85

GNBDD006 continued – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Y_ppm	Yb_ppm	Ga_ppm	Hf_ppm	Nb_ppm	Rb_ppm	Zr_ppm
GRD07904	DDH	GNBDD006	0	1	33.1	5.74	9.8	24.3	20.6	115.5	824
GRD07905	DDH	GNBDD006	1	2	29.9	4.12	24.2	13.3	23.9	129	410
GRD07906	DDH	GNBDD006	2	3	55.1	7.65	27.7	12.3	26.3	138	395
GRD07907	DDH	GNBDD006	3	4	121	12.05	18.7	17	24.3	108.5	525
GRD07908	DDH	GNBDD006	4	5	64.2	8.84	15.8	21	26.4	112.5	675
GRD07909	DDH	GNBDD006	5	6	82.8	11.3	22.1	30.5	39.2	162.5	928
GRD07910B	DDH	GNBDD006	6	7	57	8.78	28.9	28.1	51.4	84.7	793
GRD07911	DDH	GNBDD006	7	8	32	5.75	36.3	26.7	65.7	5.3	717
GRD07912	DDH	GNBDD006	8	9	34.7	6.25	39.4	29.3	72	6	742
GRD07913	DDH	GNBDD006	9	10	38.9	6.3	40.4	27.4	80.4	8.6	783
GRD07914	DDH	GNBDD006	10	11	35.4	6.21	40	25.1	74.6	6.1	704
GRD07915	DDH	GNBDD006	11	13	35.8	6.62	39	26.2	74	5.4	740
GRD07916	DDH	GNBDD006	13	15	32.6	6.38	29.8	28.1	63.1	3.1	798
GRD07917	DDH	GNBDD006	15	16	33	6.84	30	29.1	65.7	2.9	804
GRD07918	DDH	GNBDD006	16	17	36.4	6.97	32	28.2	71.9	3	782
GRD07919	DDH	GNBDD006	17	18	41.6	7.63	29.7	32.7	66.8	34	881
GRD07920	DDH	GNBDD006	18	19	58.9	10.65	32.3	46.2	83.1	3.3	1275
GRD07921	DDH	GNBDD006	19	20	66	10.25	40.1	46.5	89.4	3	1200
GRD07922	DDH	GNBDD006	20	21	57.5	6 19	36.1	25	70.5	21	709
GRD07925	DDH	GNBDD000	20	21	54.6	6.63	31.2	23	56.2	2.1	645
GRD07926		GNBDD000	21	22	57.3	7 12	20.1	18 55	50.2	2.5	538
GRD07920		GNBDD000	22	23	54.2	6.04	29.1	14.25	/1	2.5	/12
GRD07022	חסס	GNRDD000	20	24	62.3	6.19	32.1	R 16	20	2.2	200
GRD07920		GNBDD000	24	20	62.5	5 20	21 8	7.56	29	J.J 1 Q	222
GRD07020		GNBDD000	20	20	61	5.67	24.0 21 /	7.00	24.4	1.3	107
GRD07930		GNBDD000	20	21	58 /	5.07	21.4	7.1	20 01 R	5.5	197
CDD070331	חטט	CNPDD000	21	20	00.4 60.0	0.00	24.2	7.1	21.0	0.0	192
GRD07932	UUH	CNRDD000	20	29	00.3	0.43	21.5	1.11	20.9	0./	202
GRD07933	DDH	GINBDD000	29	30	92.7	8.7	21.9	0.53	23.2	9.6	1//
GRD07934	DDH	CNRDDD000	30	31	75.0	0.04	20.2	0.//	23	1.0	179
GRD07935	DDH	GINBDD000	31	32	/ 5.8	9.29	26	0.19	22.5	0.4	1/3
GRD07936	DDH	GNBDD006	32	33	74.5	9.7	25.5	1	22.7	70	195
GRD07937	DDH	GNBDD006	33	34	72.1	9.39	26.3	6.46	22.5	7.3	181
GRD07938	DDH	GNBDD006	34	35	74.8	10.65	24.4	6.77	22.7	1	191
GRD07939	DDH	GNBDD006	35	36	/5.4	10.8	24.7	5.99	20.5	6.4	180
GRD07940	DDH	GNBDD006	36	37	99.4	12	24.8	7.01	22.6	/.4	202
GRD07941	DDH	GNBDD006	37	38	136	16	29.4	8.57	27.6	10.4	239
GRD07942	DDH	GNBDD006	38	40	81.1	11.15	23.9	6.51	22	9.3	179
GRD07945	DDH	GNBDD006	40	41	69.1	10.85	24.5	6.59	21.4	7.8	180
GRD07946	DDH	GNBDD006	41	42	68	10.95	23	6.23	19.55	6.8	168
GRD07947	DDH	GNBDD006	42	42.8	82.1	13.65	24	6.59	19.35	7.7	181
GRD07948	DDH	GNBDD006	42.8	43.8	88.9	13.65	24.9	6.55	20.1	7.1	167
GRD07949	DDH	GNBDD006	43.8	44.7	76.6	11.2	23.5	6.45	19.4	8.7	184
GRD07950	DDH	GNBDD006	44.7	45.8	104	11.45	22.5	6.61	18.8	10	180
GRD07951	DDH	GNBDD006	45.8	46.9	79.5	11.3	22.7	6.42	18.95	11.4	176
GRD07952	DDH	GNBDD006	46.9	48.2	83.2	11.7	23.4	6.52	18.45	12.2	178
GRD07953	DDH	GNBDD006	48.2	49	104	12.9	22.6	6.86	19.05	8.2	192
GRD07954	DDH	GNBDD006	49	50	79	11.55	21.1	5.57	15.85	10.2	164
GRD07955	DDH	GNBDD006	50	51	90	13.6	22.5	6.12	18	12.2	168
GRD07956	DDH	GNBDD006	51	52	119.5	16.35	21.8	6.06	17.25	22.6	170
GRD07957	DDH	GNBDD006	52	53	162	18.45	22.1	6.62	19.9	66.4	176
GRD07958	DDH	GNBDD006	53	54	154	16.35	21.6	6.16	17.35	78.8	176
GRD07959	DDH	GNBDD006	54	55	121	14.05	20.4	5.69	16.95	90.4	168
GRD07960	DDH	GNBDD006	55	56	146.5	16.5	20	5.84	15.55	122.5	171
GRD07961	DDH	GNBDD006	56	57	128	13.95	19.6	5.6	14.25	139	158
GRD07962	DDH	GNBDD006	57	58	143	14.5	20.6	6.02	15.45	177	162
GRD07965	DDH	GNBDD006	58	59	125	13.8	19.2	5.15	15.3	160	146
GRD07966	DDH	GNBDD006	59	60	141	14.7	18.6	5.09	14.95	178.5	142
GRD07967	DDH	GNBDD006	60	61	158.5	15.25	19.8	5.72	15.55	248	158
GRD07968	DDH	GNBDD006	61	62	128.5	14.6	19.4	5.75	17.25	199	158
GRD07969	DDH	GNBDD006	62	63	120.5	14.25	18.6	5.9	16.25	187	160
GRD07970	DDH	GNBDD006	63	64	121.5	13.25	18.2	5.21	14.7	184.5	143
GRD07971	DDH	GNBDD006	64	65	127.5	14.85	19	5.39	14.7	190.5	153
GRD07972	DDH	GNBDD006	65	66	132.5	13.75	19.2	5.63	15.75	191	158
GRD07973	DDH	GNBDD006	66	67	162.5	15.35	18.5	5.44	14.3	187	147
GRD07974	DDH	GNBDD006	67	68	161	15.4	19.4	5.11	15.5	212	146
GRD07975	DDH	GNBDD006	68	69	164	16.25	18.2	5.08	14.4	193.5	145
GRD07976	DDH	GNBDD006	69	70	132	12.3	17.6	5.03	14.45	197	138
GRD07977	DDH	GNBDD006	70	71	138.5	12	17.3	4.93	13.65	190.5	137
GRD07978	DDH	GNBDD006	71	72	135.5	11.85	18	5.15	14.65	185	142
GRD07979	DDH	GNBDD006	72	73	113.5	10.8	16.7	5.01	14.5	173.5	138
GRD07980	DDH	GNBDD006	73	74	106	9.52	15.8	4.29	12.15	178.5	123
GRD07981	DDH	GNBDD006	74	75	91	7.96	17	5.32	15.35	183.5	143
GRD07982	DDH	GNBDD006	75	76	106.5	9.45	16.1	4.64	14	178.5	136
GRD07985	DDH	GNBDD006	76	77	87.3	7.62	16.2	4.19	13.25	178	118
GRD07986	DDH	GNBDD006	77	78	92.4	7.91	16.7	4,49	13.8	172.5	125
GRD07987	DDH	GNBDD006	78	79	83.2	6.93	16.6	4.45	12.55	175.5	132
GRD07988	DDH	GNBDD006	79	80	82.4	7.38	16.4	4.55	12.85	167.5	133
GRD07989	DDH	GNBDD006	80	81	81.2	6.57	15.8	4.49	11 75	158	134
GRD07990	DDH	GNBDD006	81	82	68.5	5.67	15.4	4 51	11.95	157.5	138
			•.		50.0	0.01					

ASX ANNOUNCEMENT

GNBDD006 continued – Narraburra Prospect

	SampleID	Туре	Hole_ID	From_m	To_m	Y_ppm	Yb_ppm	Ga_ppm	Hf_ppm	Nb_ppm	Rb_ppm	Zr_ppm
ſ	GRD07991	DDH	GNBDD006	82	83	72.5	6.06	15.6	4.58	13.05	156.5	135
	GRD07992	DDH	GNBDD006	83	84	71.7	6.24	15.2	4.58	11.65	154	143
	GRD07993	DDH	GNBDD006	84	85	65.8	5.73	15.2	4.45	12.65	163.5	133
	GRD07994	DDH	GNBDD006	85	86	51.2	4.75	15.3	3.9	11.6	169	111
	GRD07995	DDH	GNBDD006	86	87	60.6	5.4	15.2	4.24	12.55	159.5	126
	GRD07996	DDH	GNBDD006	87	88	59.9	5.49	15.2	4.41	11.75	163	127
	GRD07997	DDH	GNBDD006	88	89	50.8	4.8	16.2	4.64	12.05	165.5	140
	GRD07998	DDH	GNBDD006	89	90	54.3	5.21	16.7	4.48	11.45	168	141
	GRD07999	DDH	GNBDD006	90	91	57.6	5.8	15.2	4.75	13	145.5	131
	GRD08000	DDH	GNBDD006	91	92	46.3	4.45	14.7	4.27	11.2	139.5	127
	GRD08001	DDH	GNBDD006	92	92.7	48.6	4.61	16.7	4.49	11.55	150	133

GNBDD007 – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Ce_ppm	Dy_ppm	Er_ppm	Eu_ppm	Gd_ppm	Ho_ppm	La_ppm	Lu_ppm	Nd_ppm	Pr_ppm
GRD08003	B DDH	GNBDD007	0	1	29.4	5.06	4.32	0.38	3.01	1.25	14.2	0.86	12.4	3.34
CPD08004		CNRDD007	1	2	30.2	5.22	4.46	0.38	3.26	1.28	15.6	0.82	13.3	3.5
GRD00004		GNDDD007	1	2	30.2	J.22	4.40	0.00	3.20	1.20	10.0	0.02	13.3	0.0
GRD08005	DDH	GNBDD007	2	3	83.7	10.1	7.08	0.91	8.33	2.19	40.9	1.32	37.9	10.5
GRD08006	5 DDH	GNBDD007	3	4.25	118.5	14	10.05	1.21	12.35	3.06	53.6	1.76	53.7	13.9
GRD08007	7 DDH	GNBDD007	4.25	5.3	24.5	7.64	6.91	0.35	4.45	1.99	10.7	1.24	11.1	2.9
CPD08008		CNRDD007	53	6.1	10.6	5.28	5.07	0.11	1 07	1.4	4	1.05	3.5	0.81
GRD0000	DDH	GINBDD007	5.5	0.1	10.0	5.20	5.07	0.11	1.97	1.4	4	1.05	3.5	0.01
GRD08009	DDH	GNBDD007	6.1	7.2	9.7	5.36	4.82	0.1	1.8	1.37	2.8	0.84	2.7	0.7
GRD08010	DDH	GNBDD007	7.2	8.2	8.2	5.57	5.29	0.16	1.9	1.46	2.9	0.93	2.6	0.73
GRD08011	DDH	GNBDD007	8.2	9.05	92	5 79	5 95	0.12	1 96	16	3	1 12	23	0.66
CDD09012		CNPDD007	0.05	10	0.2	5.62	5.64	0.06	1.00	1 59	2.2	1 10	2.0	0.54
GRD00012	DDH	GINEDDUUI	9.05	10	0.3	5.03	5.04	0.00	1.09	1.00	2.2	1.10	2.2	0.54
GRD08013	B DDH	GNBDD007	10	11	8.7	5.34	5.15	0.09	1.9	1.44	1.9	0.98	2	0.55
GRD08014	DDH	GNBDD007	11	12	12.4	4.99	4.93	0.07	1.7	1.36	2.5	1.09	2.2	0.59
GRD08015		GNRDD007	12	13	14.4	5 12	5 13	0.09	1 56	1 31	16	1.01	1.8	0.44
ORD00013		ONDDD007	12	10	10	5.12	5.15	0.00	1.00	1.01	1.0	1.01	1.0	0.44
GRD08016	DDH	GNBDD007	13	14	13	4.05	4.23	0.06	1.32	1.08	1.5	0.79	1.3	0.36
GRD08017	7 DDH	GNBDD007	14	15	13.9	4.87	4.83	0.08	1.78	1.3	1.9	0.83	1.9	0.54
GRD08018		GNBDD007	15	16	11.8	5 16	4 92	0.06	1.66	1 35	22	1.01	19	0.47
CDD00040		CNIDDD007	16	17	10	5.16	F 06	0.07	1.00	1.00	1 7	1.01	1.7	0.45
GRD00019	, חעע	GINBDDUUI	10	17	10	5.30	5.20	0.07	1.91	1.45	1.7	1.12	1.7	0.45
GRD08020	DDH	GNBDD007	17	18.4	8.2	4.97	5.06	0.08	1.5	1.38	2	1.06	1.6	0.45
GRD08021	I DDH	GNBDD007	18.4	19	32.5	5.35	5.09	0.08	1.94	1.43	3.1	1.03	3	0.87
GRD0802/		GNRDD007	10	20	14.2	1 79	4.88	0.07	17	1 28	24	0.94	2.4	0.59
ORD00024		ONDDD007	15	20	17.2	4.75	4.00	0.07	1.7	1.20	2.7	0.04	2.4	0.00
GRD08025	DDH	GNBDD007	20	21	17.4	5.74	6.06	0.07	1.96	1.61	2.6	1.22	2.4	0.67
GRD08026	5 DDH	GNBDD007	21	22	13.2	6.17	5.98	0.08	2.02	1.64	2.8	1.15	2.4	0.6
GRD08027	7 DDH	GNBDD007	22	23	12.8	6.51	6.31	0.08	2.15	1.72	2.8	1.1	2.8	0.67
CPD08029		CNRDD007	23	24	11.5	5.82	6.07	0.06	1.82	1.62	2.6	1 22	2	0.56
GRD00020		GNDDD007	25	24	11.5	5.02	0.07	0.00	1.02	1.02	2.0	1.22	2	0.30
GRD08029	UDH	GNBDD007	24	25	16.4	5.45	6.37	0.07	1.68	1.55	3.2	1.37	2.1	0.72
GRD08030) DDH	GNBDD007	25	26	15	6.62	6.94	0.07	2.25	1.88	3	1.28	2.5	0.7
GRD08031		GNBDD007	26	27	20.3	6.81	7 48	0.07	2.03	1 97	29	1 44	24	0.68
GDD0000		CNDDD007	20	21	10.0	0.01	1.40	0.07	2.00	0.04	2.5	4.00	4.0	4.04
GRD08032	2 DDH	GNBDD007	21	28	18.Z	9.67	10	0.1	3.64	2.84	3.1	1.00	4.2	1.04
GRD08033	B DDH	GNBDD007	28	29	19.5	9.87	10.7	0.1	3.44	2.92	3.1	1.86	3.5	0.89
GRD08034	DDH	GNBDD007	29	30	23.4	7.45	7.96	0.07	2.37	2.23	3	1.28	2.6	0.69
GRD08035		GNRDD007	30	31	17 7	7 22	8.6	0.07	2.05	2 17	24	1.67	2	0 / 0
ORDOODS		ONDDD007	00	20	11.1	1.22	10.0	0.07	2.03	4.74	2.7	1.07	2	0.45
GRD08036	DDH	GNBDD007	31	32	123	15.75	19.6	0.12	4.54	4.74	3.5	3.12	3.6	0.97
GRD08037	7 DDH	GNBDD007	32	33	16.9	8.4	10.7	0.06	2.42	2.5	3.1	2.01	2.3	0.65
GRD08038	B DDH	GNBDD007	33	34	11.2	6.41	8.32	0.07	1.72	1.86	3.1	1.86	1.7	0.58
CDD08030		CNRDD007	34	35	11.2	6.63	8 / 7	0.05	1.83	1.06	16	2.04	16	0.42
GRD00033		GNDDD007	54	55	11.2	0.05	0.47	0.05	1.05	1.30	1.0	2.04	1.0	0.42
GRD08040	J DDH	GNBDD007	35	36	30.1	11.35	12.15	0.16	4.71	3.07	11.2	2.06	10	2.55
GRD08041	I DDH	GNBDD007	36	37.05	208	29.1	20.1	1.07	19.55	6.36	82.2	2.07	69.9	19.1
GRD08044		GNBDD007	37.05	38 15	218	28.6	19.05	1 22	21.4	5.82	95.7	1 98	84	22.4
		ONDDD007	07.00	20.10	20.5	44.7	45.4	0.00	E 44	0.02	44.0	0.44	40.0	0.00
GRD08043	DDH	GNBDD007	38.15	39.3	32.5	14.7	15.4	0.26	5.11	3.91	11.0	Z.11	10.3	2.68
GRD08046	5 DDH	GNBDD007	39.3	40.4	25.7	11.25	14.1	0.13	3.38	3.25	5	2.79	4.6	1.2
GRD08047	7 DDH	GNBDD007	40.4	41.45	12.4	6.01	7.14	0.05	1.83	1.8	0.9	1.18	1.1	0.24
GRD08048		GNBDD007	11.45	123	17.8	6.95	7.64	0.08	2 27	1 00	23	1 14	23	0.54
0000040		ONDDD007	40.0	42.0	17.0	40.05	1.04	0.00	2.27	1.00	2.0	1.14	2.0	0.04
GRD08049	UDH	GNBDD007	42.3	43.3	9.5	10.05	11.1	0.09	2.88	2.7	1.4	1.62	1.9	0.34
GRD08050) DDH	GNBDD007	43.3	44.3	25.1	20.9	19.55	0.49	9.79	5.3	27.1	2.87	21	5.25
GRD08051	I DDH	GNBDD007	44.3	45.4	50.2	21.4	19.35	0.53	9.02	5.31	32.6	2.57	23.6	6.46
GRD08052	אחח מ	GNBDD007	45.4	46.25	94.9	17 1	16.2	0.35	7.2	1 35	18.6	2.05	14.4	3.62
ORD000002		ONDDD007	40.05	47.0	00.4	17.1	10.2	0.00	7.2	4.00	10.0	2.00	14.4	0.02
GRD08053	S DDH	GNBDD007	40.25	47.3	62.1	15.85	14.7	0.45	7.96	4.06	27.3	1.9	19.3	4.93
GRD08054	I DDH	GNBDD007	47.3	48.2	25.7	15.3	14.45	0.43	7.29	3.94	22.2	1.74	16.1	3.89
GRD08055	5 DDH	GNBDD007	48.2	49	31	15.4	14.95	0.4	7.26	4.24	26.6	1.66	20.6	5.7
CPD08056		CNRDD007	10	50	00.5	16 15	15.5	0.45	7.88	4 27	20.4	1 78	20.3	5.22
ORDOOUS		ONDDD007	40	50	101.5	10.15	10.0	0.45	1.00	7.21	25.4	1.70	20.5	0.04
GRD0805/	r DDH	GNBDD007	50	51	104.5	14.9	14.35	0.37	б	3.99	15.8	1.71	11.2	2.81
GRD08058	B DDH	GNBDD007	51	52	39.6	16.35	15.15	0.49	7.47	4.19	27.1	1.6	18.2	4.47
GRD08059	DDH	GNBDD007	52	53	68.8	13.35	12.3	0.51	7.91	3.44	42.3	1.33	32	9.21
GRD08060		GNBDD007	53	54	47.2	12.45	11.2	0.55	6.43	3.06	36	13	26.3	7.04
CRECCOUC		CINDDDOOT	55		77.2	12.45	11.2	0.00	0.40	5.00	50	1.0	20.0	1.04
GRD08061	I DDH	GNBDD007	54	55	//.b	19.45	15.45	1.02	15.35	4.56	104	1.62	72.3	19.5
GRD08064	DDH	GNBDD007	55	56	127	12.95	11.95	0.49	7.66	3.27	43	1.23	32.8	9.12
GRD08065	5 DDH	GNBDD007	56	57	239	14.25	12.95	0.55	7.67	3.58	47.6	1.49	35.9	10.3
GRD08066		GNRDD007	57	58	161.5	16.4	12 75	0.85	11.45	3 78	78 Q	1 / 2	51 Q	15
ODDCCC		CNIDDDOOT	57	50	101.0	45.0	12.10	0.00	7.00	0.70	20.4	4.50	00.0	0.11
GRD08067	DDH	GNBDD00/	58	59	202	15.2	14.05	0.64	7.82	3.83	39.1	1.58	32.2	9.41
GRD08068	B DDH	GNBDD007	59	60	271	15.95	14.1	0.64	9.58	4.07	54.6	1.6	42.5	11.85
GRD08069	DDH	GNBDD007	60	61	168.5	17.55	15.6	0.67	9.01	4.38	45.7	2.14	36.2	10.35
GRD08070	עחק (GNBDD007	61	61.0	100	11.05	0.7/	0.37	6.01	2.60	28.8	1.02	25.3	7 1/
0000070			010	01.0	103	11.0J	3.14	0.07	0.01	2.03	20.0	1.02	20.0	1.14
GRD08071	UDH	GNBDD007	61.9	02.85	103	10.25	9.2	0.4	5.78	2.56	25.6	1.02	23.3	6.68
GRD08072	2 DDH	GNBDD007	62.85	63.8	112.5	17.4	12.8	0.81	12.6	4.01	79.4	1.38	52.5	15.05
GRD08073	B DDH	GNBDD007	63.8	64.8	77.5	16.65	13.15	0.8	11.95	4.08	73.5	1.58	48.8	13.9
GRD08074		GNBDD007	6/ 8	65.0	160	17.7	12 75	0.01	1/1 75	3 0/	07 3	1 // 2	6/ 0	17 75
0000074		CNDDDD007	04.0	00.0	103	44.55	12.10	0.01	14.15	0.04	01.0	1.44	45.0	40 7
GRD08075	DDH	GNBDD00/	65.9	60.00	84.3	14.55	11.5	0.69	10.45	3.43	62.9	1.33	45.8	12.7
GRD08076	5 DDH	GNBDD007	66.85	67.7	82	12.7	10.2	0.48	8.31	3.03	47.6	1.24	37.6	10.55
GRD08077	DDH	GNBDD007	67.7	69.1	73.2	13.4	11.1	0.64	9.38	3.23	58.1	1.26	41.2	11.5
GRD09079		GNRDD007	60.1	70	88.2	1/	11 95	0.75	10.3	2 / 1	60.1	1 22	/19.7	13 15
0000070			03.1	70.0	00.2	10.0	44.05	0.75	10.5	0.00	50.5	1.00	40.7	10.10
GRD08079	UDH	GNBDD007	70	70.9	94.8	13.9	11.35	0.58	9.5	3.36	56.5	1.32	40.2	10.95
GRD08080	DDH	GNBDD007	70.9	71.85	92	12.2	10.7	0.52	7.51	3.09	37.2	1.16	31.3	8.83
GRD08081	DDH	GNBDD007	71.85	73	76	15 85	13.1	0.67	10.05	3,93	55.4	1.38	40.5	11 15
CRD0000		CNIPDD007	70	74	02 5	.0.00	46.0	4.4	46.6	E 00	05.1	1.00	65.0	40
GR000084		GNDDD00/	13	14	30.0	22.3	10.9	1.1	10.0	0.20	00.0	1.02	00.9	10
GRD08085	DDH	GNBDD007	74	75	77	14.35	10.65	0.67	10.4	3.42	49.7	1.31	36.8	10.2
GRD08086	DDH	GNBDD007	75	76	77.8	17.9	14.1	0.77	12.75	4.4	51.3	1.4	39.6	10.5
GRD08087		GNRDD007	76	77	64.7	15.3	11 7	0.8	11.45	3.8	56.6	1 / 8	43.1	11.4
CDD00007		CNIDDD007	73	70	70.0	14.05	0.50	0.5	0.57	0.0	44.0	1.70	70.1	0.00
GRD08088	DDH	GINBDD00/	11	/۲	13.3	11.85	9.59	0.55	8.57	2.89	44.0	1.24	35.5	9.63
GRD08089	DDH	GNBDD007	78	79	78.9	14.25	11.4	0.72	10.2	3.5	45.7	1.38	36.5	9.63
GRD08090	DDH	GNBDD007	79	80	67	13.05	10.1	0.6	9.51	3.02	40.5	1.2	33.5	9.05
CDD00004	עחק	CNRDD007	00	Q1 1	76.0	7 0	E 20	0.51	6.01	1 66	27.0	0.76	20.5	0 10
GKD00091	υυπ	UNDONON	00	01.1	10.9	1.0	0.09	0.01	0.01	CO.1	51.0	0.70	30.5	0.10

GNBDD007 continued – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Y_ppm	Yb_ppm	Ga_ppm	Hf_ppm	Nb_ppm	Rb_ppm	Zr_ppm
GRD08003	DDH	GNBDD007	0	1	33.5	5.34	11.2	22.2	22.9	118	684
GRD08004	DDH	GNBDD007	1	2	33.6	5.13	14	20.2	28	129.5	624
GRD08005	DDH	GNBDD007	2	3	57.8	8.04	19.6	20.4	29.2	123.5	664
GRD08006	DDH	GNBDD007	3	4.25	83.1	11.05	19.1	24.4	33.4	127	721
GRD08007	DDH	GNBDD007	4.25	5.3	53.6	8.06	24.2	28.1	48.6	29	764
GRD08008	DDH	GNBDD007	5.3	6.1	39	6.75	36.6	28.7	68.9	10	759
GRD08009	DDH	GNBDD007	6.1	7.2	35.6	6.01	36.5	27.9	69.1	5	691
GRD08010	DDH	GNBDD007	7.2	8.2	38.3	6.56	32.7	29.7	68.4	7	717
GRD08011	DDH	GNBDD007	8.2	9.05	40.4	7.6	24	33.2	57.3	4.4	932
GRD08012	DDH	GNBDD007	9.05	10	40	7.49	31.8	33.8	64.8	5.4	847
GRD08013	DDH	GNBDD007	10	11	35	6.59	35.6	29.1	69.4	5.1	752
GRD08014	DDH	GNBDD007	11	12	34.7	6.68	32.8	30.5	65.1	5.4	797
GRD08015	DDH	GNBDD007	12	13	34.4	6.52	29.4	30.3	62.1	3.3	768
GRD08016	DDH	GNBDD007	13	14	28.5	5.75	24.2	25.5	47.4	2.8	644
GRD08017	DDH	GNBDD007	14	15	34.6	6.12	30.5	27.3	62.8	4.4	690
GRD08018	DDH	GNBDD007	15	16	35.6	6.47	34.1	27.5	69.4	4.8	690
GRD08019	DDH	GNBDD007	16	17	36.6	6.99	33	30.9	70.3	4.2	735
GRD08020	DDH	GNBDD007	17	18.4	34.4	6.71	30.4	29.2	67	3.6	742
GRD08021	DDH	GNBDD007	18.4	19	36.8	6.86	33	35	68.5	4.1	838
GRD08024	DDH	GNBDD007	19	20	37.5	6.87	30.6	31.3	66.5	3.3	792
GRD08025	DDH	GNBDD007	20	21	44.8	8.35	33.6	32.9	80.6	3.8	855
GRD08026	DDH	GNBDD007	21	22	45.2	8.13	39.6	34.7	87.5	4	839
GRD08027	DDH	GNBDD007	22	23	49.3	7.85	45.6	31.6	97.5	4.6	772
GRD08028	DDH	GNBDD007	23	24	47.8	8.09	38.4	38.3	88.1	3	929
GRD08029	DDH	GNBDD007	24	25	44.8	9.15	36.2	40.9	88.7	2.6	959
GRD08030	DDH	GNBDD007	25	26	56.8	8.95	48.8	38.5	110.5	4.1	924
GRD08031	DDH	GNBDD007	26	27	57.5	9.86	51.6	46.3	117	3.6	1050
GRD08032	DDH	GNBDD007	27	28	92.7	11.3	46.8	43.5	111	2.8	1015
GRD08033	DDH	GNBDD007	28	29	91.3	12.3	44.6	43.2	110.5	2.2	1035
GRD08034	DDH	GNBDD007	29	30	68.2	8.79	44.9	32.8	105	2.5	782
GRD08035	DDH	GNBDD007	30	31	68.1	10.7	34.7	38.4	88.1	2.2	914
GRD08036	DDH	GNBDD007	31	32	154.5	21	46.4	55.4	94.4	2.5	1655
GRD08037	DDH	GNBDD007	32	33	75.5	13.25	47.3	44.5	122	2.9	1035
GRD08038	DDH	GNBDD007	33	34	54.4	11.85	45.6	45.1	117	2.1	1075
GRD08039	DDH	GNBDD007	34	35	58.6	12.6	42.1	44.9	114.5	1.7	1120
GRD08040	DDH	GNBDD007	35	36	99.6	13.45	32.8	44	91.1	0.9	1080
GRD08041	DDH	GNBDD007	36	37.05	201	16.4	15.6	31.4	38.2	1.2	850
GRD08044	DDH	GNBDD007	37.05	38.15	173.5	15.9	17.8	18.3	41.8	1.2	494
GRD08045	DDH	GNBDD007	38.15	39.3	125	16	13.6	17.1	34	0.9	454
GRD08046	DDH	GNBDD007	39.3	40.4	95.5	19.25	19.9	33.5	68.7	3.6	908
GRD08047	DDH	GNBDD007	40.4	41.45	62.8	7.51	29.2	8.82	27	6.9	224
GRD08048	DDH	GNBDD007	41.45	42.3	69.9	7.48	25.7	8.04	23.7	8	212
GRD08049	DDH	GNBDD007	42.3	43.3	97.8	11.2	24.1	8.39	24.3	4.5	234
GRD08050	DDH	GNBDD007	43.3	44.3	188.5	18.9	24.1	7.91	21.6	9.6	230
GRD08051	DDH	GNBDD007	44.3	45.4	177	18.15	24.3	7.65	19.05	13	222
GRD08052	DDH	GNBDD007	45.4	46.25	148.5	14.55	24.9	8.7	20.3	13.6	268
GRD08053	DDH	GNBDD007	46.25	47.3	142.5	13.2	23.4	7.49	20.5	18.6	225
GRD08054	DDH	GNBDD007	47.3	48.2	139	12.3	24.8	7.22	22.7	31.7	209
GRD08055	DDH	GNBDD007	48.2	49	151	12.15	22.2	6.94	19.7	38	204
GRD08056	DDH	GNBDD007	49	50	153.5	12.9	21.3	7.23	20.5	72.8	213
GRD08057	DDH	GNBDD007	50	51	144.5	11.8	20.3	6.59	20.3	92.5	188
GRD08058	DDH	GNBDD007	51	52	148.5	12.55	21.3	6.45	19.45	113.5	191
GRD08059	DDH	GNBDD007	52	53	119.5	10.25	21.6	6.26	19.35	143.5	183
GRD08060	DDH	GNBDD007	53	54	106	9.6	21.3	6.85	19.55	161.5	186
GRD08061	DDH	GNBDD007	54	55	156.5	12.65	22.3	6.15	19.15	217	178
GRD08064	DDH	GNBDD007	55	56	112.5	9.4	21	6.35	19.5	187.5	172
GRD08065	DDH	GNBDD007	56	57	123.5	10.65	20.7	6.34	20.3	175.5	174
GRD08066	DDH	GNBDD007	57	58	127.5	10.3	20.9	5.97	19.5	205	174
GRD08067	DDH	GNBDD007	58	59	133.5	12.8	19.8	6.13	18.3	199.5	179
GRD08068	DDH	GNBDD007	59	60	135	12.55	21	6.5	19.6	231	186
GRD08069	DDH	GNBDD007	60	61	151	14.5	20	5.95	18.8	207	171
GRD08070	DDH	GNBDD007	61	61.9	97.1	8.2	20	6.33	19.15	236	172
GRD08071	DDH	GNBDD007	61.9	62.85	93.9	8.04	20	6.58	18.7	235	173
GRD08072	DDH	GNBDD007	62.85	63.8	135.5	11	20.3	6.03	18.5	310	171
GRD08073	DDH	GNBDD007	63.8	64.8	139	12.15	20.3	5.93	17.9	321	167
GRD08074	DDH	GNBDD007	64.8	65.9	133	11.1	20.3	6.35	18.95	339	179
GRD08075	DDH	GNBDD007	65.9	66.85	118	10.15	20.1	6.27	18.7	308	174
GRD08076	DDH	GNBDD007	66.85	67.7	104	9.36	19.4	5.61	16.45	284	163
GRD08077	DDH	GNBDD007	67.7	69.1	113	9.79	20.6	6.15	18.75	283	167
GRD08078	DDH	GNBDD007	69.1	70	126	10.35	19.8	5.33	17.2	296	155
GRD08079	DDH	GNBDD007	70	70.9	121	9.83	20.1	6.16	18.4	302	174
GRD08080	DDH	GNBDD007	70.9	71.85	117.5	9.22	20	5.89	18	250	164
GRD08081	DDH	GNBDD007	71.85	73	158.5	10.55	19.4	5.91	16.85	215	172
GRD08084	DDH	GNBDD007	73	74	216	13.5	18.1	5.75	14.9	206	156
GRD08085	DDH	GNBDD007	74	75	139.5	9.5	18	5.56	15.85	196.5	162
GRD08086	DDH	GNBDD007	75	76	201	10.85	17.6	5.47	16.3	187	143
GRD08087	DDH	GNBDD007	76	77	136.5	10.8	17.9	5.04	15.2	195	137
GRD08088	DDH	GNBDD007	77	78	107	8.68	18.2	5.67	15.95	194.5	154
GRD08089	DDH	GNBDD007	78	79	136.5	10	17.8	5.59	15.7	201	154
GRD08090	DDH	GNBDD007	79	80	122.5	9.2	17.6	5.13	16.55	206	143
GRD08091	DDH	GNBDD007	80	81.1	50.4	5.87	17.4	4.96	14.95	167.5	135

GNBDD008 – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Ce_ppm	Dy_ppm	Er_ppm	Eu_ppm	Gd_ppm	Ho_ppm	La_ppm	Lu_ppm	Nd_ppm	Pr_ppm
GRD08093	DDH	GNBDD008	0	1	53.8	5.44	3.91	0.51	4.3	1.26	29.7	0.73	21.8	6.14
GRD08094	DDH	GNBDD008	1	2	54.6	7.14	5.47	0.45	5.81	1.7	39.4	0.88	30.9	9.15
GRD08095	DDH	GNBDD008	2	3	62.9	7.56	5.75	0.5	6.37	1.68	40.6	0.85	32	9.1
GRD08096	DDH	GNBDD008	3	4	60.8	10.7	7.41	0.53	9.66	2.37	49.2	1.12	41.7	11.4
GRD08097	DDH	GNBDD008	4	5	84.7	7.38	5.32	0.41	6.43	1.69	35.1	0.84	29.1	7.98
GRD08098	DDH	GNBDD008	5	6	71.2	10.2	7.2	0.49	9.6	2.35	49.4	1.07	38.1	9.94
GRD08099	DDH	GNBDD008	6	7	58.5	8.6	6.29	0.4	7.07	1.87	36.5	0.97	28.8	7.49
GRD08100	DDH	GNBDD008	7	8	67.2	7.33	5.51	0.39	6.36	1.68	34.2	0.9	28	7.65
GRD08101	DDH	GNBDD008	8	9	67.7	7.92	5.59	0.36	6.82	1.71	39	0.94	30.8	8.54
GRD08102	DDH	GNBDD008	9	10	55.6	7.04	5.12	0.37	5.84	1.59	33.6	0.88	26.5	7.26
GRD08103	DDH	GNBDD008	10	11	83.1	7.49	4.9	0.28	5.86	1.57	32.2	0.75	26	7.26
GRD08104	DDH	GNBDD008	11	12	61.9	7.22	5.22	0.36	5.51	1.56	31.2	0.84	24.9	7.02
GRD08105	DDH	GNBDD008	12	12.7	61.5	7.63	5.7	0.35	5.93	1.78	32.9	0.92	27.4	7.23

GNBDD008 continued – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Y_ppm	Yb_ppm	Ga_ppm	Hf_ppm	Nb_ppm	Rb_ppm	Zr_ppm
GRD08093	DDH	GNBDD008	0	1	38.5	4.8	18.4	6.85	15.45	176.5	215
GRD08094	DDH	GNBDD008	1	2	49.1	6.13	17.6	4.84	16	197	123
GRD08095	DDH	GNBDD008	2	3	50.1	6.26	17.6	5.27	16.45	191	137
GRD08096	DDH	GNBDD008	3	4	73.4	7.89	17.6	4.81	14.2	184.5	130
GRD08097	DDH	GNBDD008	4	5	47.9	6.21	17.9	5.14	16.3	189.5	133
GRD08098	DDH	GNBDD008	5	6	76.1	7.31	17.6	5.36	16.85	189.5	138
GRD08099	DDH	GNBDD008	6	7	59.6	6.7	18.2	5.39	16.8	201	139
GRD08100	DDH	GNBDD008	7	8	50.1	6.05	17.6	5.1	15.75	191	133
GRD08101	DDH	GNBDD008	8	9	51.9	6.15	17.2	5.09	15.65	188	124
GRD08102	DDH	GNBDD008	9	10	49.4	5.92	16.8	4.7	14.8	193	124
GRD08103	DDH	GNBDD008	10	11	49.2	5.74	17.2	4.98	15.85	196	130
GRD08104	DDH	GNBDD008	11	12	46.9	5.43	17.2	4.84	15.45	176	127
GRD08105	DDH	GNBDD008	12	12.7	56.5	6.34	17.4	5.12	15.6	180.5	127

GNBDD009 – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Ce_ppm	Dy_ppm	Er_ppm	Eu_ppm	Gd_ppm	Ho_ppm	La_ppm	Lu_ppm	Nd_ppm	Pr_ppm
GRD08107	DDH	GNBDD009	0	1	35.7	4.02	2.88	0.46	3.1	0.86	18.3	0.5	15.1	4.1
GRD08108	DDH	GNBDD009	1	2	22.6	3.4	2.78	0.3	2.31	0.77	12.5	0.45	9.9	2.55
GRD08109	DDH	GNBDD009	2	3	24.1	3.63	2.81	0.25	2.41	0.8	12.8	0.49	10.2	2.73
GRD08112	DDH	GNBDD009	3	4	24.3	2.78	2.4	0.16	1.73	0.71	7	0.52	6.2	1.52
GRD08113	DDH	GNBDD009	4	5	25.7	2.81	2.42	0.16	1.94	0.73	9.1	0.49	7.5	2.18
GRD08114	DDH	GNBDD009	5	6	23.5	3.42	2.89	0.1	1.93	0.82	4.9	0.58	5.1	1.33
GRD08115	DDH	GNBDD009	6	7	25	3.27	2.89	0.16	1.96	0.89	5.5	0.62	5.7	1.52
GRD08116	DDH	GNBDD009	7	8	23.8	4.43	3.32	0.19	2.6	0.98	7.2	0.66	6.8	1.78
GRD08117	DDH	GNBDD009	8	9	33.7	4.13	3.18	0.19	3	0.98	16.9	0.59	14.4	4.1
GRD08118	DDH	GNBDD009	9	10	48.8	4.52	3.55	0.25	3.57	0.99	21	0.7	18.2	4.96
GRD08119	DDH	GNBDD009	10	11	42.6	4.9	3.72	0.24	3.77	1.13	18.6	0.68	15.6	4.56
GRD08120	DDH	GNBDD009	11	12	53.8	6.42	4.98	0.25	4.68	1.44	23.7	0.88	22.2	6.16
GRD08121	DDH	GNBDD009	12	13	56.2	7.63	5.11	0.51	6.56	1.59	33.2	0.88	31.9	9.27
GRD08122	DDH	GNBDD009	13	14	78.4	8.57	5.57	0.57	8.04	1.79	47.5	0.9	42.3	11.95
GRD08123	DDH	GNBDD009	14	15	192	9.7	6.17	0.61	7.58	2.03	41.3	1.05	38.5	10.7
GRD08124	DDH	GNBDD009	15	16	278	22.2	13.75	1.6	21.5	4.56	166	2.2	144.5	41.6
GRD08125	DDH	GNBDD009	16	17	174.5	46.6	26	3.3	53.6	9.07	256	3.58	234	60.4
GRD08126	DDH	GNBDD009	17	18	73.5	12.4	9.9	0.46	9.66	3	37.3	1.61	31.1	8.32
GRD08127	DDH	GNBDD009	18	19	72.5	7.58	5.42	0.36	6.37	1.75	35.5	0.78	29.4	8.3
GRD08128	DDH	GNBDD009	19	20	75.9	8.15	5.33	0.39	6.84	1.62	38.5	0.86	31.3	8.59
GRD08129	DDH	GNBDD009	20	21	59.2	7.43	5.13	0.44	6.3	1.62	37.7	0.8	31.3	8.55
GRD08132	DDH	GNBDD009	21	22	78.1	8.23	5.72	0.42	7.55	1.82	42.8	0.87	32.7	9.17
GRD08133	DDH	GNBDD009	22	23.2	76.4	8.36	5.53	0.54	7.82	1.75	47.7	0.88	41.4	11.8
GRD08134	DDH	GNBDD009	23.2	24.2	71.1	7.65	5.42	0.49	6.9	1.67	46.3	0.88	38.7	10.85
GRD08135	DDH	GNBDD009	24.2	25.1	70.7	9.96	6.91	0.62	9.72	2.16	61.1	1.09	46.1	12.85

GNBDD009 continued – Narraburra Prospect

SampleID	Туре	Hole_ID	From_m	To_m	Y_ppm	Yb_ppm	Ga_ppm	Hf_ppm	Nb_ppm	Rb_ppm	Zr_ppm
GRD08107	DDH	GNBDD009	0	1	25.9	3.34	12.2	8.72	13.4	140	298
GRD08108	DDH	GNBDD009	1	2	23.1	2.87	12.7	8.38	13.85	124	296
GRD08109	DDH	GNBDD009	2	3	23	3.15	14.3	10.1	15.1	57.6	353
GRD08112	DDH	GNBDD009	3	4	19.5	2.94	22.9	8.03	20.9	23.5	212
GRD08113	DDH	GNBDD009	4	5	19.8	3.23	24.4	7.18	23.5	17.9	181
GRD08114	DDH	GNBDD009	5	6	22.1	3.77	24.4	7.06	23.9	14.5	181
GRD08115	DDH	GNBDD009	6	7	23.9	3.81	24	6.98	22.3	31	180
GRD08116	DDH	GNBDD009	7	8	29.6	4.24	25.4	7.22	23.9	31.1	180
GRD08117	DDH	GNBDD009	8	9	25	3.95	25	7.12	23.3	26.4	176
GRD08118	DDH	GNBDD009	9	10	29	4.39	24.7	6.87	24.3	34.5	166
GRD08119	DDH	GNBDD009	10	11	31.3	4.64	23.2	6.73	22.6	63.3	172
GRD08120	DDH	GNBDD009	11	12	42	5.85	22.7	6.82	21	100.5	181
GRD08121	DDH	GNBDD009	12	13	43	6.13	20.8	6.04	18.45	204	147
GRD08122	DDH	GNBDD009	13	14	49.5	6.34	18.2	5.2	16.55	201	140
GRD08123	DDH	GNBDD009	14	15	54.3	7.53	17.6	5.07	15.9	190	135
GRD08124	DDH	GNBDD009	15	16	136.5	14.1	17.3	4.61	15.5	192	124
GRD08125	DDH	GNBDD009	16	17	249	24.1	17.1	4.7	15	179.5	119
GRD08126	DDH	GNBDD009	17	18	96.8	10.1	17.8	5.13	15.2	186	133
GRD08127	DDH	GNBDD009	18	19	53.1	5.36	17.4	4.75	15.5	183.5	122
GRD08128	DDH	GNBDD009	19	20	51	5.52	17.7	4.95	16.1	184	132
GRD08129	DDH	GNBDD009	20	21	50	5.48	17.6	4.86	15.5	186.5	125
GRD08132	DDH	GNBDD009	21	22	58.1	5.64	17.8	4.81	16.45	199.5	126
GRD08133	DDH	GNBDD009	22	23.2	52	6.13	17.6	4.89	15.85	202	129
GRD08134	DDH	GNBDD009	23.2	24.2	46.6	6.21	18.1	5.21	17.15	195	132
GRD08135	DDH	GNBDD009	24.2	25.1	70.1	7.3	17.6	5.33	18.8	192.5	136