

ASX ANNOUNCEMENT

23 May 2023

Drill Ready Copper and Gold Target Identified from Soil and Rock Chip Samples Yeoval East Prospect, NSW

- Results from 113 soil and 6 rock chip samples from the Yeoval East (EL8538) returned highly anomalous copper and gold
- Yeoval East Prospect remains under explored and demonstrates that potential exists to expand the Yeoval Copper and Gold Mineral Resource Estimate (12.8Mt @ 0.38% Cu, 0.14g/t Au, 2.2g/t Ag & 120ppm Mo*), located 700m to the west
- Soil Sampling highlights:
 - GRS03543 0.14% Cu, 0.27g/t Au
 - GRS03545 0.30g/t Au
 - GRS03563 0.05% Cu, 0.22g/t Au
- **Rock Chip highlights:**
 - GRR0376 0.28% Cu, 0.56g/t Au
 - GRR0378 0.25% Cu, 0.81g/t Au
- Recent exploration program identified an area approximately 600m long and 200m wide with greater than 150ppm Cu in soil, associated with variably altered and sheared granodiorite host rock, similar to the host of the Yeoval Mineral Resource
- Planning for follow-up drilling is well underway

Godolphin Resources Limited (ASX: GRL) ("Godolphin" or the "Company") is pleased to announce the results of recent soil sample and rock chip assays from the Yeoval East Prospect, located on EL8538. The Company's hand-auger soil and rock chip sampling programs were designed to provide a better understanding, and size potential, of copper and gold mineralisation identified in the 1990s.

The current exploration program follows surface geological mapping which located an undrilled area of outcropping visible secondary copper mineralisation plus strong pervasive and vein-related epidote-chloritealbite-sericite alteration. The surface sampling program was completed to determine the size of the copper and gold anomalism and investigate NW trending structures identified in the recent high resolution ground magnetics program, which could be focussing the copper-gold mineralisation. Fractures can be a key when exploring for copper gold porphyries because these fractures can act as a conduit for mineralising fluids.

Management Commentary

Managing Director Ms Jeneta Owens said:

"The Yeoval East Prospect is located only 700m east of our Yeoval JORC 2012 Resource, which currently sits at 12.8 Mt of disseminated copper, gold, silver and molybdenum mineralisation, highlighting the excellent discovery potential across the prospect.

* Refer to Ardea Resources (ASX: ARL) Announcement of 15 August 2019 "Yeoval Copper-Gold Resource Update".

A: Unit 13, 11-19 William Street, Orange NSW 2800

P: +61 2 6318 8144

E: info@godolphinresources.com.au www.godolphinresources.com.au

ABN: 13 633 779 950

ASX Code: GRL

The Yeoval East Prospect along with nearby Cyclops and Goodrich Prospects are compelling copper and gold targets which GRL will follow-up in 2023. The recent surface sample results from the Yeoval East Prospect are testament to the effectiveness of grass roots exploration methods, such as geological mapping, to identify copper and gold mineralisation in a terrain that has been explored previously.

Drill target planning is currently underway. When this is finalised, we intend to mobilise a rig to site and follow up these targets to further expand our resource footprint in the Lachlan Fold Belt."

Project Background

Historically, a shallow drilling and small surface sampling program undertaken in the 1990s identified copper and gold mineralisation, near the recently identified areas of interest. No systematic exploration to follow-up the historical results has previously been undertaken.

Six shallow reverse circulation (RC) drill holes were drilled at Yeoval East in 1994 by previous explorers, the maximum depth was only 72m. Drill hole RC94Y42 was collared nearby to malachite-bearing granodiorite outcropping rocks and reported a best intersection of 21m @ 0.34% Cu & 0.04g/t Au. However, this hole was drilled in the opposite direction from the recently identified zone of anomalous copper in soil and rock chips.

The soil and rock chip assay results highlight the abundance of anomalous copper and gold mineralisation at Yeoval East, which provides additional exploration and drill targets for the Company.

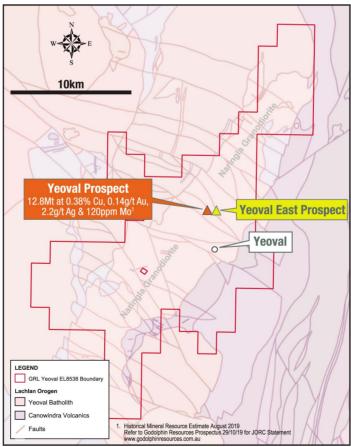


Figure 1. Location of the Yeoval East Prospect on EL8538.

Program overview and results of rock chip and soil assays:

Yeoval East is situated approximately 2km north of the rural township of Yeoval on the Company's 100% owned EL8538 tenement. The prospect is 700m east of the existing JORC 2012 Yeoval Mineral Resource of 12.8 Mt at 0.38% copper, 0.14 g/t gold, 2.2 g/t silver & 120 ppm molybdenum. Mineralisation at the Yeoval East Prospect is associated with zones of pervasive and vein-related epidote-sericite-chlorite-albite-quartz alteration of the Naringla Granodiorite host rock. Secondary copper mineralisation (malachite) and sulphides (chalcopyrite and pyrite) in outcropping rocks was mapped by the Company's geologist during evaluation of the prospect (refer images 1 & 2).

Results from the soil and rock chip program identified a >150ppm copper zone approximately 600m long and 200m wide with copper results up to 0.14% from the soil (sample GRS03543) and 0.28% copper in rock chips (sample GRR0376, Figure 2). These results in soil samples are highly anomalous and significant.

Gold values across the prospect are also highly elevated with numerous small zones of more than 50ppb gold identified, which correlates well with the copper (Figure 3). The highest gold-in-soil value of 0.30g/t (Sample GRS03545) and 0.81g/t in rock chip (sample GRR0378) was also returned from the prospect.

Image 1 & 2: (left) Visible malachite (copper mineral) and copper sulphides (estimated 5% of total rock mass) from outcropping rocks, and (right), Epidote-quartz vein with strong albite alteration halo, Yeoval East (right)

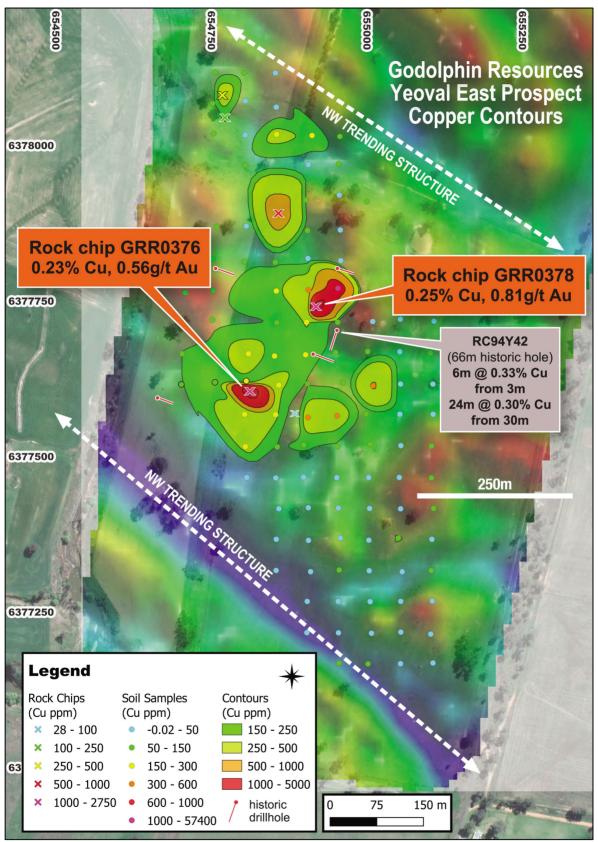


Figure 2. Contoured >150ppm copper soils and rock results over TMI ground magnetics imagery, Yeoval East Prospect.

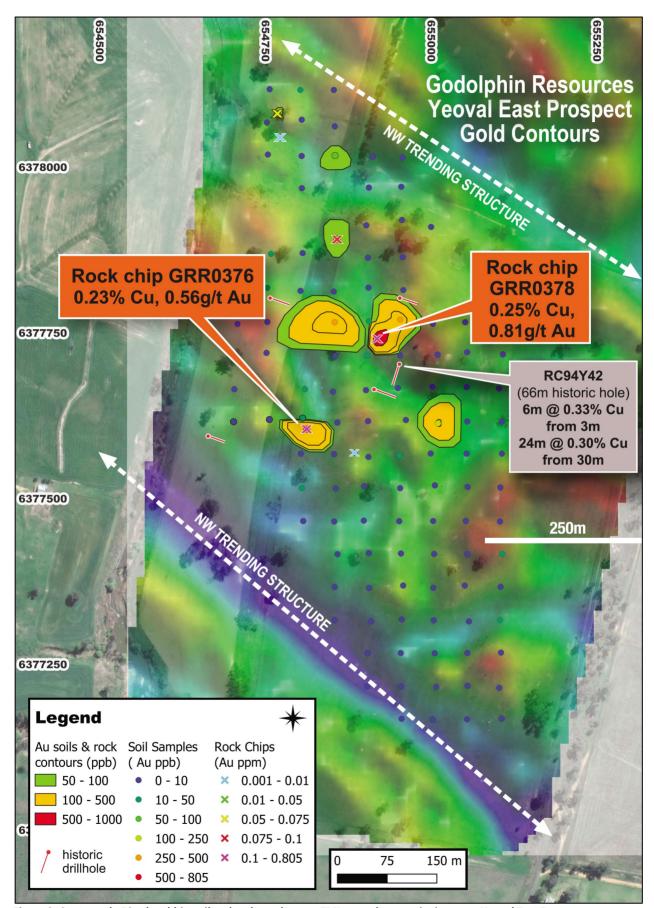


Figure 3. Contoured >50ppb gold-in-soil and rock results over TMI ground magnetics imagery, Yeoval East Prospect.

Recent geological mapping across the prospect identified multiple outcrops displaying favourable structural ground preparation (S-C fabric shearing with an overall sinistral sense of movement). The Company's high resolution ground magnetic data also highlighted a number of northwest trending linear demagnetised structures which are interpreted to be faults. This is suggestive of a dilational zone where mineralised fluids have focused during a period of crustal movement. Northwest structural features are found at nearby operating mines. Similar structural orientations exist across the Lachlan Fold Belt and are considered important for the emplacement of significant mineral deposits. It is widely accepted that porphyry deposits are structurally controlled and identification of these structures at the project location is highly encouraging.

Historic drilling in the 1990s failed to adequately test the targets identified by GRL's most recent exploration work. These recent assay results, along with the high-resolution ground magnetic data, enable further exploration planning to progress across the prospect. The Company's objective is to drill test the coincident geochemical, geophysical and geological targets identified at Yeoval East.

<<ENDS>>

This market announcement has been authorised for release to the market by the Board of Godolphin Resources Limited.

For further information regarding Godolphin, please visit https://godolphinresources.com.au/ or contact:

Jeneta Owens

Managing Director +61 417 344 658 jowens@godolphinresources.com.au

Released through: Henry Jordan, Six Degrees Investor Relations, +61 431 271 538

About Godolphin Resources

Godolphin Resources (ASX: GRL) is an ASX listed resources company, with 100% controlled Australian-based projects in the Lachlan Fold Belt ("LFB") NSW, a world-class gold-copper province. Currently the Company's tenements cover 3,200km² of highly prospective ground focussed on the Lachlan Transverse Zone, one of the key structures which controlled the formation of copper and gold deposits within the LFB. Additional prospectivity attributes of GRL tenure include the McPhillamys gold hosting Godolphin Fault and the Boda gold-copper hosting Molong Volcanic Belt.

Godolphin is exploring for structurally hosted, epithermal gold and base-metal deposits and large, gold-copper Cadia style porphyry deposits and is pleased to announce a re-focus of exploration efforts for unlocking the potential of its East Lachlan tenement holdings, including increasing the mineral resource of its advanced Lewis Ponds Project. Reinvigoration of the exploration efforts across the tenement package is the key to discovery and represents a transformational stage for the Company and its shareholders.

COMPLIANCE STATEMENT The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Ms Jeneta Owens, a Competent Person who is a Member of the Australian Institute of Geoscientists. Ms Owens is the Managing Director and full-time employee of Godolphin Resources Limited. Ms Owens has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Owens consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Information in this announcement is extracted from reports lodged as market announcements referred to above and available on the Company's website www.godolphinresources.com.au.

The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

ASX Code: GRL

ABN: 13 633 779 950

ASX ANNOUNCEMENT

Appendix 1 - JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report	Soil Sampling and rock chip Rock chip samples of selected zones of outcrop based on geological determination. Soil sampling was conducted by GRL staff on a 50m x 50m sampling grid to ensure adequate coverage across interpreted structures and areas of outcrop. Regolith mapping was conducted prior to sampling, ensuring a representative sample of in-situ soil material was taken. A hand auger was used to target the C horizon, where possible. All samples were between 1-4kg and were individually labelled and geologically documented. All soil samples were sieved to -2mm in at the GRL exploration shed prior to sending to ALS. Historic RC Drilling Sampling conducted on 3m intervals Two 4kg spear samples collected from each 3m run.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details.	 No drilling methods were used to collect the samples. A hand Auger was used to collect soil samples. Historic drilling in the 1990s was done using Reverse Circulation drilling methods.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No drilling methods were used to collect the soil samples. Unknown for historic RC drilling

- A CV	/ A N I N	IOLIK	LOCK	
ASX	ANI	UUU N	ICEIV	

ASX ANNO	UNCEMENT	
Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Soil and rock chip sampling Notes on the soil type, colour and hole depths were recorded for soil samples. Geology of rock chip samples was recorded. Geological records have been primarily quantitative. Historic RC Drilling Rock chip samples were geologically logged each 1m interval and magnetic susceptibility readings taken .
Sub-sampling techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Unknown for RC drilling All soil samples were taken in the field and taken to be sieved to <2mm in the Godolphin exploration shed in Orange
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Soil and rock chip samples Rock chip and soil sample analysis was undertaken by ALS Laboratories in Brisbane, Australia. Rock chip samples were sorted, weighed, dried, crushed and pulverized to 85% passing 75 microns. Rock chip samples and soil samples - Au were analysed using Fire Assay with ICP-AES Finish (Au-ICP21). All other elements were analysed using four acid digest ICP-MS (ME-MS61). Laboratory QAQC was undertaken. Historic RC Drilling Percussion chips submitted to ALS Laboratories Brisbane, Australia. Samples assayed for Au via Fire Assay/AAS; Ag, As, Bi, Cu, Fe, Mn, Mo, Ni, Pb, Zn by AAS method, Sn and W by XRF method
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Data was collected and documented by GRL geologists in the field. Historic drill data was collected by CRAE geologists.

~ 85	\sim	A RIE		LOCE	MENT
	- X	Δ N		V(: - I	$V \vdash P \mid V \mid$
			-		VI

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Soil and rock chip locations were surveyed using a handheld Garmin GPS Grid used was MGA Zone 55, datum GDA94 Historic RC drillhole collar locations were taken using AMG 84 grid with a +/- 50m accuracy.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Bock Chip Distance between rock chip sample sites varies, data spacing is dictated by availability of outcrop. Data spacing is not sufficient to determine geological and grade continuity. Sampling was of a reconnaissance nature. No composting of samples or results was applied. Soil Sampling Soil sampling was conducted on 50m x 50m grid, which is considered appropriate for the type of mineralised system being explored for at Yeoval. The nearby Yeoval resource has approximate dimensions of 300m long by 150m wide. Historic RC Drilling Drilling at Yeoval East was of a random nature given the early stage of the exploration program.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Soil sampling was conducted on east-west oriented lines, with structures interpreted to be oriented NW-SE All historic RC holes were collared at -60°. Drilling was design to target anomalous Cu in soils and/or magnetic anomalies.
Sample security	The measures taken to ensure sample security.	Samples collected in the field were transported by geological staff to the Company's Orange exploration shed, where they were processed and sent to ALS laboratory Orange. Unknown sample security for the RC drill samples
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews were deemed necessary, as this work is purely qualitative assaying for first-pass exploration purposes.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference	Yeoval Project Area - Yeoval East Prospect
tenement and land tenure	name/number, location and ownership including	The Yeoval project is located surrounding the township of Yeoval in NSW, and has an elevation between 200 m and 500 m above sea-level.
status	agreements or material issues	The exploration rights to the project are owned 100% by Godolphin Resources through the granted exploration licence EL8358
	with third parties such as joint ventures, partnerships,	The Yeoval East Prospect, on which the aforementioned results have been discussed, is on private freehold land over which GRL holds the exploration rights.
	overriding royalties, native title	There is no Joint venture or any other arrangements pertaining to this project, and also no native title claims over the area.
	interests, historical sites, wilderness or national park	The security deposit paid by GRL for EL8538 is \$10,000.
	and environmental settings.	
	The security of the tenure held at the time of reporting along	
	with any known impediments	
	to obtaining a license to	
	operate in the area.	
Exploration	Acknowledgment and	Yeoval and Yeoval East
done by other parties	appraisal of exploration by other parties.	Yeoval - See ASX announcement by Ardea (ASX:ARL) 15 August 2019, GRL 7 October 2021 and 23 March 2022.
parties	outer parties.	Yeoval East – See ASX announcement by GRL 2 March 2023
		CRAE completed 35 RC drill holes across the Yeoval district in 1994 mostly targeting Cu-in-soil anomalism as well as aeromagnetic targets located proximal to the Yeoval Prospect. Six drill holes were completed across the Yeoval East Prospect; RC94Y32, 33, 35, 36 and 42.
Geology	Deposit type, geological	Geology
	setting and style of mineralization.	EL8538 covers a large portion of the Early Devonian Yeoval Batholith including felsic to mafic intrusives of the Yeoval Intrusive Complex.
		The Yeoval Complex is strongly fractionated and comprised of various intermediate intrusive lithologies – granite, quartz monzodiorite, quartz diorite, microgranodiorite, granodiorite, diorite and gabbro (Pogson et al 1998). The more fractioned intermediate phases are highly prospective for porphyry copper - molybdenum ± gold mineralisation.
		This Yeoval intrusive complex formed during a Late Silurian to Early Devonian melting and rifting event that split the Ordovician to Early Silurian Macquarie Arc. Its chemistry is shoshonitic, in common with the Ordovician volcanic rocks that host the Cadia and Northparkes porphyry copper-gold deposits, and a similar mantle source and mineral potential is inferred. The south-eastern portion of the licence area hosts the Silurian aged Canowindra Volcanics - garnetiferous quartz-feldspar-cordierite tuffs, ashstone and breccias. A core of Ordovician sandstone, siltstone and minor limestone from the Kabadah Formation found within the Silurian sediments and volcanics. This area is considered prospective for low sulphidation Au-Ag mineralisation similar in style to the Mt Aubrey gold deposit to the south-west of the area.
		Emplacement of intrusives and extrusives in the Early Devonian, which are related to the Boggy Plain Supersuite, has given rise to intrusive related mineralisation.
		Numerous copper-gold occurrences are known in the Yeoval Complex. Mineralisation ranges from disseminated chalcopyrite-gold within altered granodiorite (Yeoval, Yeoval South) to quartz-magnetite-chalcopyrite veining within structures inferred within the granodiorite, at the Goodrich Mine. The style of the mineral occurrences is indicative of a porphyry copper-gold setting. Minor occurrences of copper ± gold mineralisation is present within the microgranite and granite of the Yeoval Complex. Minor molybdenum is reported at the Martins Reef Prospect in the south-west of the licence area. Scattered copper-gold prospects also occur within the Silurian and Devonian sequences east of the Yeoval Batholith.

-7	CV	A NI	NI/	\sim 1	TRE	\sim E	= N /I	_
		AIN	1311	-	JIN	LJE	= IVI	

Criteria	JORC Code explanation	Commentary
		Mineralisation hosted within the Yeoval complex is centred in and around quartz monzonite porphyry complexes which intruded the volcanic centres, composing of pipes, dykes and stocks.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Hole ID MGA_East MGA_North Dip Azimuth (MGA) RC94Y32 654914 6377664 -60 109 RC94Y33 654790 6377390 -60 289 RC94Y35 654758 6377802 -60 109 RC94Y36 654953 6377802 -60 109 RC94Y42 654953 6377702 -60 199
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No grade aggregation, weighting, or cut-off methods were used for this announcement.
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 No geometry or width is reported with rock samples. Exploration nature of the drilling hasn't determined mineralisation widths.

- 74	CV	AN		TINE	CEN	/ENT
		AIN	HVL		(. F I\	

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Sample locations are included in the figures within the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Results.	All results have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material exploration data has been reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling).	Further work across the prospects mentioned in this announcement includes: Soil sampling Programs/ Mapping Programs/Rock Chip Programs. RC Drilling Diamond Drilling

ASX ANNOUNCEMENT

Appendix 2: Tables of rock chip and soil sample results discussed in this ASX release. (Note: This is a complete list of samples, but not of all the elements. A complete list can be requested and supplied pending GRL Board approval).

Rock Chip Samples

Sample ID	North	East	Au (ppm)	Ag (ppm)	Cu (ppm)	Cu (%)	Mo (ppm)
GRR0373	6378021	654858	0.079	1.1	799	-	2.68
GRR0374	6328045	654772	0.006	0.09	114		0.94
GRR0375	6378081	654768	0.062	0.19	336	-	6.58
GRR0376	6377605	654801	0.557	1.84	2750	0.28	0.67
GRR0377	6377569	654884	0.001	0.03	27.6	_	0.42
GRR0378	6377740	654918	0.805	1.65	2510	0.25	0.55

Soil Samples

Sample ID	Cu (ppm)	Au (ppm)	Ag (ppm)	Mo (ppm)
GRS03504	80.8	0.010	0.103	0.76
GRS03505	76.6	0.017	0.077	1.16
GRS03506	42.6	0.002	0.095	0.93
GRS03507	29.6	0.003	0.043	0.76
GRS03508	25.1	0.001	0.046	0.74
GRS03509	55.7	0.006	0.050	0.61
GRS03510	165.5	0.002	0.065	1.12
GRS03511	266	0.087	0.195	1.30
GRS03512	47.3	0.002	0.043	0.69
GRS03513	57.3	0.005	0.038	0.90
GRS03514	79.9	0.006	0.073	1.09
GRS03515	57	0.004	0.044	0.53
GRS03516	51.3	0.017	0.050	0.81
GRS03517	41	0.004	0.047	0.75
GRS03518	84.4	0.010	0.060	0.77
GRS03519	63.5	0.041	0.049	0.56
GRS03520	78.5	0.005	0.041	0.70
GRS03521	62.2	0.007	0.061	0.61
GRS03522	104	0.007	0.098	0.71
GRS03523	117	0.006	0.091	0.76
GRS03524	104	0.006	0.095	0.77
GRS03526	113.5	0.008	0.081	1.18
GRS03527	66.5	0.005	0.037	1.14
GRS03528	74.4	0.006	0.057	0.58
GRS03529	40.1	0.002	0.034	0.74
GRS03530	54.3	0.007	0.034	0.71

Godolphin Resources

ABN: 13 633 779 950

ASX Code: GRL

A: Unit 13, 11-19 William Street, Orange NSW 2800

P: +61 2 6318 8144

E: info@godolphinresources.com.au www.godolphinresources.com.au

Sample ID	Cu (ppm)	Au (ppm)	Ag (ppm)	Mo (ppm)
GRS03531	54.7	0.009	0.033	0.84
GRS03532	19.75	0.001	0.036	0.68
GRS03533	86.8	0.007	0.064	0.72
GRS03535	93.9	0.008	0.047	0.59
GRS03536	46.5	0.002	0.049	0.51
GRS03537	42.8	0.003	0.035	0.42
GRS03538	46.5	0.006	0.046	0.68
GRS03539	80.3	0.009	0.057	0.94
GRS03540	33.7	0.001	0.046	0.63
GRS03541	29.8	0.006	0.036	0.43
GRS03542	50.4	0.005	0.059	0.46
GRS03543	1430	0.271	0.301	0.49
GRS03544	334	0.026	0.052	0.64
GRS03545	186	0.295	0.591	0.91
GRS03547	101	0.005	0.068	0.73
GRS03548	211	0.028	0.091	0.65
GRS03549	51.8	0.005	0.055	0.68
GRS03550	29.2	0.001	0.022	0.61
GRS03551	42.9	0.003	0.052	0.71
GRS03552	39.5	0.002	0.044	0.93
GRS03553	54.8	0.004	0.054	0.87
GRS03554	28.9	0.007	0.058	0.83
GRS03555	63.9	0.008	0.058	0.74
GRS03556	59.4	0.004	0.040	0.65
GRS03557	150.5	0.002	0.049	0.93
GRS03558	154	0.010	0.047	0.98
GRS03559	182	0.017	0.100	0.76
GRS03560	240	0.005	0.057	0.80
GRS03561	87.4	0.003	0.042	0.69
GRS03562	58.9	0.004	0.055	0.66
GRS03563	553	0.222	0.086	0.98
GRS03565	43.2	0.005	0.064	0.65
GRS03566	22.4	0.002	0.025	0.99
GRS03568	28.5	0.001	0.038	0.79
GRS03569	22.7	0.002	0.036	0.72
GRS03570	82.9	0.007	0.042	0.62
GRS03571	329	0.026	0.088	0.63
GRS03572	333	0.004	0.057	0.62
GRS03573	228	0.005	0.085	0.80
GRS03574	281	0.010	0.110	0.81
GRS03575	273	0.017	0.190	0.92
GRS03576	92.9	0.004	0.036	0.55
GRS03577	120	0.004	0.025	0.83
GRS03578	70	0.004	0.029	0.87
GRS03579	81.9	0.008	0.043	0.78

Sample ID	Cu (ppm)	Au (ppm)	Ag (ppm)	Mo (ppm)
GRS03580	18.4	0.001	0.025	0.73
GRS03581	72	0.004	0.036	0.61
GRS03582	67.9	0.004	0.047	0.61
GRS03583	11.15	0.001	0.017	0.83
GRS03584	24.5	0.002	0.036	0.76
GRS03585	41.5	0.003	0.050	0.56
GRS03586	32.4	0.002	0.029	0.72
GRS03587	29.2	0.002	0.044	0.58
GRS03589	40.9	0.003	0.052	0.86
GRS03590	22.5	0.002	0.053	0.63
GRS03591	42.5	0.002	0.064	0.72
GRS03592	28.5	0.001	0.035	0.69
GRS03593	29.6	0.003	0.050	0.76
GRS03595	12.25	0.001	0.023	0.47
GRS03596	61.5	0.011	0.061	0.60
GRS03597	48.3	0.003	0.055	0.62
GRS03598	108.5	0.009	0.040	0.79
GRS03599	9.35	0.000	0.016	0.48
GRS03600	49.1	0.002	0.039	0.72
GRS03601	21.9	0.001	0.025	0.80
GRS03602	26.2	0.003	0.053	0.69
GRS03603	30.5	0.002	0.059	0.69
GRS03604	30.4	0.002	0.075	0.93
GRS03605	51.8	0.002	0.039	0.65
GRS03606	39.6	0.002	0.043	0.67
GRS03607	30.4	0.001	0.050	0.81
GRS03608	62.2	0.014	0.070	0.74
GRS03610	18.7	0.001	0.047	0.77
GRS03611	33.7	0.002	0.038	0.63
GRS03612	36.4	0.004	0.047	0.74
GRS03613	41.6	0.002	0.036	0.71
GRS03614	28.2	0.004	0.046	0.87
GRS03615	42.8	0.003	0.046	0.36
GRS03616	42	0.002	0.055	0.72
GRS03617	45	0.002	0.059	0.72
GRS03618	38.3	0.002	0.039	0.60
GRS03619	43	0.001	0.028	0.53
GRS03620	42.9	0.002	0.035	0.77
GRS03621	33.9	0.001	0.047	0.82
GRS03622	56.1	0.003	0.021	0.63
GRS03623	54.5	0.002	0.057	0.52
GRS03625	294	0.028	0.114	0.85

Historic RC Drilling (CRAE 1994)

	_					
Hole_ID	From (m)	To (m)	Interval (m)	Cu (ppm)	Au (ppm)	Mo_ppm
RC94Y32	0	3	3	141	0.04	-2
RC94Y32	3	6	3	137	0.03	2
RC94Y32	6	9	3	136	0.04	4
RC94Y32	9	12	3	40	0.02	3
RC94Y32	12	15	3	103	0.01	3
RC94Y32	15	18	3	85	0.02	4
RC94Y32	18	21	3	97	0.03	5
RC94Y32	21	24	3	105	-0.01	4
RC94Y32	24	27	3	52	-0.01	3
RC94Y32	27	30	3	349	-0.01	7
RC94Y32	30	33	3	1240	0.01	3
RC94Y32	33	36	3	242	0.01	4
RC94Y32	36	39	3	41	0.02	2
RC94Y32	39	42	3	620	0.02	17
RC94Y32	42	45	3	83	0.01	2
RC94Y32	45	48	3	490	0.03	3
RC94Y32	48	51	3	282	0.04	2
RC94Y32	51	54	3	168	0.02	5
RC94Y32	54	57	3	501	0.02	3
RC94Y32	57	60	3	36	0.03	-2
RC94Y32	60	63	3	25	-0.01	-2
RC94Y32	63	66	3	300	0.01	3
RC94Y32	66	69	3	29	0.02	2
RC94Y32	69	72	3	242	0.01	2
RC94Y33	0	3	3	50	0.02	3
RC94Y33	3	6	3	84	-0.01	-2
RC94Y33	6	9	3	140	0.01	2
RC94Y33	9	12	3	94	0.01	2
RC94Y33	12	15	3	51	0.01	2
RC94Y33	15	18	3	12	-0.01	3
RC94Y33	18	21	3	49	-0.01	-2
RC94Y33	21	24	3	53	0.01	-2
RC94Y33	24	27	3	55	0.01	2
RC94Y33	27	30	3	68	-0.01	3
RC94Y33	30	33	3	501	0.04	8
RC94Y33	33	36	3	125	0.01	4
RC94Y33	36	39	3	199	0.02	13
RC94Y33	39	42	3	139	0.01	4
RC94Y33	42	45	3	251	0.03	6
RC94Y33	45	48	3	584	0.05	4
RC94Y33	48	51	3	422	0.05	4
RC94Y33	51	54	3	652	0.07	10

	From	To (m)	Interval (m)			
Hole_ID	(m)	10 (111)	interval (III)	Cu (ppm)	Au (ppm)	Mo (ppm)
RC94Y34	0	3	3	47	-0.01	3
RC94Y34	3	6	3	42	-0.01	2
RC94Y34	6	9	3	48	0.01	2
RC94Y34	9	12	3	33	0.01	2
RC94Y34	12	15	3	45	-0.01	2
RC94Y34	15	18	3	51	0.02	2
RC94Y34	18	21	3	34	0.04	2
RC94Y34	21	24	3	33	0.03	3
RC94Y34	24	27	3	40	0.02	4
RC94Y34	27	30	3	8	0.01	4
RC94Y34	30	33	3	-2	0.05	5
RC94Y34	33	36	3	9	0.01	5
RC94Y34	36	39	3	42	0.02	5
RC94Y34	39	42	3	65	0.01	3
RC94Y34	42	45	3	33	0.01	3
RC94Y34	45	48	3	26	0.02	3
RC94Y34	48	51	3	23	0.02	3
RC94Y34	51	54	3	13	0.02	2
RC94Y35	0	3	3	79	0.02	-2
RC94Y35	3	6	3	36	0.03	-2
RC94Y35	6	9	3	42	0.03	4
RC94Y35	9	12	3	59	0.02	-2
RC94Y35	12	15	3	27	0.02	3
RC94Y35	15	18	3	52	-0.01	6
RC94Y35	18	21	3	73	0.01	5
RC94Y35	21	24	3	79	0.01	4
RC94Y35	24	27	3	58	0.02	4
RC94Y35	27	30	3	128	0.02	6
RC94Y35	30	33	3	260	0.03	4
RC94Y35	33	36	3	396	0.10	4
RC94Y35	36	39	3	444	0.00	6
RC94Y35	39	42	3	277	0.11	5
RC94Y35	42	45	3	45	0.05	5
RC94Y35	45	48	3	49	0.01	4
RC94Y35	48	51	3	145	0.01	2
RC94Y35	51	54	3	150	0.01	4
RC94Y35	54	57	3	147	0.05	3
RC94Y35	57	60	3	411	0.09	6
RC94Y36	0	3	3	65	-0.01	3
RC94Y36	3	6	3	35	-0.01	-2
RC94Y36	6	9	3	34	0.01	10
RC94Y36	9	12	3	30	-0.01	-2
RC94Y36	12	15	3	23	0.01	4
RC94Y36	15	18	3			
KC34130		13		19	0.01	10

	From	To (m)	Interval (m)			
Hole ID	(m)			Cu (ppm)	Au (ppm)	Mo (ppm)
RC94Y36	18	21	3	18	0.01	3
RC94Y36	21	24	3	39	0.1	10
RC94Y36	24	27	3	17	-0.01	4
RC94Y36	27	30	3	48	-0.01	4
RC94Y36	30	33	3	179	0.01	8
RC94Y36	33	36	3	220	-0.01	4
RC94Y36	36	39	3	43	-0.01	2
RC94Y36	39	42	3	44	-0.01	-2
RC94Y36	42	45	3	84	0.04	-2
RC94Y36	45	48	3	31	0.02	-2
RC94Y36	48	51	3	23	0.02	5
RC94Y36	51	54	3	28	0.01	8
RC94Y42	0	3	3	714	0.02	-2
RC94Y42	3	6	3	3380	0.04	5
RC94Y42	6	9	3	3210	0.03	2
RC94Y42	9	12	3	640	-0.01	3
RC94Y42	12	15	3	270	-0.01	4
RC94Y42	15	18	3	170	-0.01	3
RC94Y42	18	21	3	117	-0.01	3
RC94Y42	21	24	3	98	0.01	3
RC94Y42	24	27	3	46	0.01	3
RC94Y42	27	30	3	59	0.01	2
RC94Y42	30	33	3	4030	0.02	2
RC94Y42	33	36	3	5040	0.04	3
RC94Y42	36	39	3	7740	0.07	-2
RC94Y42	39	42	3	2450	0.1	-2
RC94Y42	42	45	3	639	0.02	-2
RC94Y42	45	48	3	2620	0.02	-2
RC94Y42	48	51	3	1080	0.01	60
RC94Y42	51	54	3	748	-0.01	19
RC94Y42	54	57	3	447	-0.01	4
RC94Y42	57	60	3	42	-0.01	2
RC94Y42	60	63	3	203	0.01	2
RC94Y42	63	66	3	95	-0.01	-2